Synlett 2015; 26(13): 1862-1866
DOI: 10.1055/s-0034-1380811
letter
© Georg Thieme Verlag Stuttgart · New York

tert-Butyl Peroxybenzoate Mediated Selective and Mild N-Benzoylation of Ammonia/Amines under Catalyst- and Solvent-Free Conditions

Dilip Kumar T. Yadav
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai – 400 019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
,
Bhalchandra M. Bhanage*
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai – 400 019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 31 March 2015

Accepted after revision: 21 April 2015

Publication Date:
08 June 2015 (online)


Abstract

A new protocol for the synthesis of amides from tert-butyl peroxybenzoate (TBPB) and ammonia/amines has been developed under catalyst- and solvent-free conditions. The ammonia, primary and secondary amines reacted smoothly with TBPB to furnish the corresponding primary, secondary, and tertiary amides in excellent yields. TBPB proved to be an efficient and highly chemoselective benzoylating reagent for aliphatic amines in the presence of aromatic amines/ ­hydroxyl groups.

Supporting Information

 
  • References and Notes

    • 1a Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 1b Fischbach MA, Walsh CT. Chem. Rev. 2006; 106: 3468
    • 1c Simonovic M, Steitz TA. Biochim. Biophys. Acta 2009; 1789: 612
    • 1d Paul HS, Robert LK, Russell FN. EP 0936864 (A1), 1999
    • 1e Malawska B. Curr. Top. Med. Chem. 2005; 5: 69
    • 1f Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Chi X, Van Lanen SG. Nat. Chem. Biol. 2010; 6: 581
    • 1g Pelagalli R, Chiarotto I, Feroci M, Vecchio S. Green Chem. 2012; 14: 2251
    • 1h Yadav DK. T, Bhanage BM. RSC Adv. 2015; 5: 12387
  • 2 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 3a Larock RC. Comprehensive Organic Transformations, A Guide to Functional Group Preparations. 2nd ed. Wiley-VCH; New York: 1999
    • 3b Charville H, Jackson D, Hodges G, Whiting A. Chem. Commun. 2010; 46: 1813
    • 3c Han S.-Y, Kim Y.-A. Tetrahedron 2004; 60: 2447
    • 3d Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
    • 3e Nordstrøm LU, Vogt H, Madsen R. J. Am. Chem. Soc. 2008; 130: 17672
    • 3f Yang X, Birman VB. Org. Lett. 2009; 11: 1499
    • 3g Bröhmer MC, Mundinger S, Bräse S, Bannwarth W. Angew. Chem. Int. Ed. 2011; 50: 6175
    • 3h Hardee DJ, Kovalchuke L, Lambert TH. J. Am. Chem. Soc. 2010; 132: 5002
    • 3i Jiang H, Liu B, Li Y, Wang A, Huang H. Org. Lett. 2011; 13: 1028
    • 4a Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 4b Taylor JE, Bull SD. Comprehensive Organic Synthesis . 2nd ed., Vol. 6 Elsevier; Oxford: 2014: 427-478
    • 5a Furniss BS, Hannaford AJ, Smith PW. G, Tatchell AR. Vogel’s Textbook of Practical Organic Chemistry . 5th ed. Pearson Education; London: 2006: 815
    • 5b Prasad AK, Kumar V, Malhotra S, Ravikumar VT, Sanghvib YS, Parmara VS. Bioorg. Med. Chem. 2005; 13: 4467
    • 5c Stawinski J, Hozumi T, Narang SA. J. Chem. Soc., Chem. Commun. 1976; 243
  • 6 Green TW, Wuts PG. M. Protective Groups in Organic Synthesis . 3rd ed. John Wiley and Sons; New York: 1999
    • 7a Pearson AL, Roush WJ. Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups. John Wiley and Sons; London: 1999: 42-44
    • 7b Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I, Babaghanbari M, Zarea M, Shariati L, Taghavi SA. J. Iran. Chem. Soc. 2009; 6: 523
    • 7c Wang T, Zhang Z, Meanwell NA. J. Org. Chem. 2000; 65: 4740
    • 7d Chattopadyay G, Chakraborty S, Saha C. Synth. Commun. 2008; 38: 4068
    • 7e Naik S, Bhattacharjya G, Talukdar B, Patel BK. Eur. J. Org. Chem. 2004; 1254
  • 8 Alalla A, Merabet-Khelassi M, Aribi-Zouioueche L, Riant O. Synth. Commun. 2014; 44: 2364
  • 9 Bhat B, Sanghvi YS. Tetrahedron Lett. 1997; 38: 8811
  • 10 Katritzky AR, Suzuki KH. J. Org. Chem. 2000; 65: 8210
  • 11 Yamada M, Watabe Y, Sakakibara T, Sudoh R. J. Chem. Soc., Chem. Commun. 1979; 179
  • 12 Mali SM, Bhaisare RD, Gopi HN. J. Org. Chem. 2013; 78: 5550
  • 13 Yokomatsu T, Arakawa A, Shibuya S. J. Org. Chem. 1994; 59: 3506
  • 14 Wu J.-W, Wu Y.-D, Dai J.-J, Xu H.-J. Adv. Synth. Catal. 2014; 356: 2429
    • 15a Wei Y, Yoshikai N. Org. Lett. 2011; 13: 5504
    • 15b Guo S, Wang Q, Jiang Y, Yu J.-T. J. Org. Chem. 2014; 79: 11285
    • 15c Cao J.-J, Zhu T.-H, Wang S.-Y, Gu Z.-Y, Wang X, Ji S.-J. Chem. Commun. 2014; 50: 6439
    • 15d Wei W, Zhang C, Xu Y, Wan XB. Chem. Commun. 2011; 47: 10827
    • 16a Khemnar AB, Bhanage BM. Eur. J. Org. Chem. 2014; 6746
    • 16b Khemnar AB, Bhanage BM. Org. Biomol. Chem. 2014; 12: 9631
    • 17a Wang N, Zou X, Ma J, Li F. Chem. Commun. 2014; 50: 8303
    • 17b Rao SN, Mohan DC, Adimurthy S. Org. Lett. 2013; 15: 1496
    • 17c Molander GA, Hiebel MA. Org. Lett. 2010; 12: 4876
  • 18 General Experimental Procedure for the Synthesis of Amide from Ammonia/Amine and TBPBA mixture of TBPB (1 mmol) and requisite aq NH3 or amine (1.1 mmol) were charged in a round-bottom flask. The reaction mixture was stirred at r.t. for the indicated time, and progress of the reaction was monitored by TLC/GC. The crude product was directly purified by column chromatography (silica gel, 100–200 mesh, PE–EtOAc) to provide the desired pure product. The identity of the compound was confirmed by 1H NMR and 13C NMR spectroscopic methods. N-(4-Methoxybenzyl)benzamide (3c) 17a 1H NMR (400 MHz, CDCl3): δ = 7.77 (d, J = 7.1 Hz, 2 H), 7.48 (t, J = 7.2 Hz, 1 H), 7.41 (t, J = 7.7 Hz, 2 H), 7.27 (d, J = 8.5 Hz, 2 H), 6.87 (d, J = 8.6 Hz, 2 H), 6.45 (br s, 1 H), 4.56 (d, J = 5.56 Hz, 2 H), 3.79 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.29, 159.11, 134.43, 131.50, 130.25, 129.31, 128.57, 126.95, 114.15, 55.31, 43.63 ppm. N-(4-Fluorobenzyl)benzamide (3e) 17a 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 8.0 Hz, 2 H), 7.49 (t, J = 7.3 Hz, 1 H), 7.40 (t, J = 7.7 Hz, 2 H), 7.31–7.25 (m, 2 H), 7.0 (t, J = 8.6 Hz, 2 H), 6.67 (br s, 1 H), 4.58 (d, J = 5.58 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.45, 162.2 (d, J C–F = 244 Hz), 134.21, 134.07, 131.64, 129.53 (d, J C–F = 8 Hz), 128.60, 126.98, 115.56 (d, J C–F = 21 Hz), 43.33 ppm. N-(3-Chlorobenzyl)benzamide (3f) 17b 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 7.16 Hz, 2 H), 7.49 (t, J = 8.4 Hz, 1 H), 7.41 (t, J = 7.7 Hz, 2 H), 7.30 (s, 1 H), 7.25–7.18 (m, 3 H), 6.77 (br s, 1 H), 4.58 (d, J = 5.72 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.54, 140.34, 134.52, 134.04, 131.71, 129.99, 128.62, 127.80, 127.68, 127.01, 125.89, 43.42 ppm. N-(4-Cyanobenzyl)benzamide (3g) 17c 1H NMR (400 MHz, CDCl3): δ = 7.80 (d, J = 7.9 Hz, 2 H), 7.59 (d, J = 6.6 Hz, 2 H), 7.52 (t, J = 7.3 Hz, 1 H), 7.45–7.41 (m, 4 H), 6.89 (br s, 1 H), 4.67 (d, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.67, 143.96, 133.76, 132.47, 131.93, 128.70, 128.19, 127.02, 118.73, 111.21, 43.48 ppm.