Intensivmedizin up2date 2015; 11(03): 257-276
DOI: 10.1055/s-0034-1392639
Pädiatrische Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Besonderheiten des Gefäßzugangs bei Kindern

Uwe Trieschmann
,
Jost Kaufmann
,
Christoph Menzel
Further Information

Publication History

Publication Date:
11 August 2015 (online)

Kernaussagen
  • Kinder benötigen Venenzugänge aus den gleichen Gründen wie Erwachsene. Aufgrund schwieriger Venenverhältnisse sind aber oft unübliche periphere, gehäuft aber auch zentralvenöse Zugänge erforderlich.

  • Im Notfall ist ein intraossärer Zugang eine zügig zu etablierende Alternative zum klassischen Venenzugang. Bei der Neugeborenenreanimation ist ein Nabelvenenkatheter eine weitere Option. Bei beiden Verfahren müssen die Komplikationen des Verfahrens beachtet werden.

  • Die Sonografie gewinnt einen immer größeren Stellenwert, insbesondere zum Anlegen von ZVK, aber auch für arterielle und periphervenöse Zugänge. Auch aus Trainingsgründen sollte diese unterstützende Technik möglichst häufig eingesetzt werden.

  • Adäquate Lagerung, Transfixationstechnik sowie eine differenzierte Auswahl von Führungsdrähten und Punktionstechniken erhöhen die Erfolgsrate.

  • Die wesentlichen mechanischen Komplikationen beim Anlegen von ZVK sind Hämatome und Pneumothorax, die sich beide durch den Einsatz der Sonografie reduzieren lassen.

  • Die Hauptkomplikation bei länger liegenden ZVK sind die Infektion und Thrombosen. Beide kann man durch eine Schulung des Personals, steriles Arbeiten und prophylaktische Hygienemaßnahmen deutlich reduzieren.

 
  • Literatur

  • 1 Goren A, Laufer J, Yativ N et al. Transillumination of the palm for venipuncture in infants. Pediatr Emerg Care 2001; 17: 130-131
  • 2 Dinner M. Transillumination to facilitate venipuncture in children. Anesth Analg 1992; 74: 467
  • 3 de Graaff JC, Cuper NJ, Mungra RA et al. Near-infrared light to aid peripheral intravenous cannulation in children: a cluster randomised clinical trial of three devices. Anesthesia 2013; 68: 835-845
  • 4 Kaddoum RN, Anghelescu DL, Parish ME et al. A randomized controlled trial comparing the AccuVein AV300 device to standard insertion technique for intravenous cannulation of anesthetized children. Paediatr Anaesth 2012; 22: 884-889
  • 5 Egan G, Healy D, O'Neill H et al. Ultrasound guidance for difficult peripheral venous access: systematic review and meta-analysis. EMJ 2013; 30: 521-526
  • 6 Doniger SJ, Ishimine P, Fox JC et al. Randomized controlled trial of ultrasound-guided peripheral intravenous catheter placement versus traditional techniques in difficult-access pediatric patients. Pediatr Emerg Care 2009; 25: 154-159
  • 7 Biarent D, Bingham R, Eich C et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 6. Paediatric life support. Resuscitation 2010; 81: 1364-1388
  • 8 Eich C, Weiss M, Neuhaus D et al. Handlungsempfehlung zur intraossären Infusion in der Kinderanästhesie. Anästhesie & Intensivmedizin 2011; 52: 46-52
  • 9 Lake W, Emmerson AJ. Use of a butterfly as an intraosseous needle in an oedematous preterm infant. Arch Dis Child Fetal Neonatal Ed 2003; 88: F409
  • 10 Heyder-Musolf J, Giest J, Straub J. Intraosseous access on a 1300 g septical premature infant. Anasthesiol Intensivmed Notfallmed Schmerzther 2011; 46: 654-657
  • 11 Neto EPS, Grousson S, Duflo F et al. Ultrasonographic anatomic variations of the major veins in paediatric patients. Br J Anaesth 2014; 112: 879-884
  • 12 Rupp SM, Apfelbaum JL. American Society of Anesthesiologists Task Force on Central Venous A, et al. Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology 2012; 116: 539-573
  • 13 Wu SY, Ling Q, Cao LH et al. Real-time two-dimensional ultrasound guidance for central venous cannulation: a meta-analysis. Anesthesiology 2013; 118: 361-375
  • 14 Pirotte T, Veyckemans F. Ultrasound-guided subclavian vein cannulation in infants and children: a novel approach. Br J Anaesth 2007; 98: 509-514
  • 15 Perin G, Scarpa MG. Defining central venous line position in children: tips for the tip. The Journal of vascular access 2015; 16: 77-86
  • 16 Richmond S, Wyllie J. European Resuscitation Council Guidelines for Resuscitation 2010 Section 7. Resuscitation of babies at birth. Resuscitation 2010; 81: 1389-1399
  • 17 Haase R, Hein M, Thale V et al. Umbilical venous catheters - analysis of malpositioning over a 10-year period. Z Geburtshilfe Neonatol 2011; 215: 18-22
  • 18 Raval NC, Gonzalez E, Bhat AM et al. Umbilical venous catheters: evaluation of radiographs to determine position and associated complications of malpositioned umbilical venous catheters. Am J of perinatology 1995; 12: 201-204
  • 19 Yigiter M, Arda IS, Hicsonmez A. Hepatic laceration because of malpositioning of the umbilical vein catheter: case report and literature review. J Pediatr Surg 2008; 43: E39-41
  • 20 Keir A, Giesinger R, Dunn M. How long should umbilical venous catheters remain in place in neonates who require long-term (>/=5-7 days) central venous access?. Journal of paediatrics and child health 2014; 50: 649-652
  • 21 Thomson TL, Levine M, Muraskas JK et al. Pericardial effusion in a preterm infant resulting from umbilical venous catheter placement. Pediatr Cardiol 2010; 31: 287-290
  • 22 Askegard-Giesmann JR, Caniano DA, Kenney BD. Rare but serious complications of central line insertion. Semin Pediatr Surg 2009; 18: 73-83
  • 23 de Jonge RC, Polderman KH, Gemke RJ. Central venous catheter use in the pediatric patient: mechanical and infectious complications. Pediatr Crit Care Med 2005; 6: 329-339
  • 24 Karapinar B, Cura A. Complications of central venous catheterization in critically ill children. Pediatrics international: official journal of the Japan Pediatric Society 2007; 49: 593-599
  • 25 Costello JM, Clapper TC, Wypij D. Minimizing complications associated with percutaneous central venous catheter placement in children: recent advances. Pediatr Crit Care Med 2013; 14: 273-283
  • 26 Dudeck MA, Weiner LM, Allen-Bridson K et al. National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J of infection control 2013; 41: 1148-1166
  • 27 O’Grady NP, Alexander M, Burns LA et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 2011; 52: e162-193
  • 28 Costello JM, Graham DA, Morrow DF et al. Risk factors for central line-associated bloodstream infection in a pediatric cardiac intensive care unit. Pediatr Crit Care Med 2009; 10: 453-459
  • 29 Richards MJ, Edwards JR, Culver DH et al. Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics 1999; 103: e39
  • 30 Sheridan RL, Weber JM. Mechanical and infectious complications of central venous cannulation in children: lessons learned from a 10-year experience placing more than 1000 catheters. Journal of burn care & research: official publication of the American Burn Association 2006; 27: 713-718
  • 31 Casado-Flores J, Barja J, Martino R et al. Complications of central venous catheterization in critically ill children. Pediatr Crit Care Med 2001; 2: 57-62
  • 32 Reyes JA, Habash ML, Taylor RP. Femoral central venous catheters are not associated with higher rates of infection in the pediatric critical care population. Am J of infection control 2012; 40: 43-47
  • 33 Breschan C, Platzer M, Jost R et al. Comparison of catheter-related infection and tip colonization between internal jugular and subclavian central venous catheters in surgical neonates. Anesthesiology 2007; 107: 946-953
  • 34 Yebenes JC, Vidaur L, Serra-Prat M et al. Prevention of catheter-related bloodstream infection in critically ill patients using a disinfectable, needle-free connector: a randomized controlled trial. Am J of infection control 2004; 32: 291-295
  • 35 Ahmed SS, McCaskey MS, Bringman S et al. Catheter-associated bloodstream infection in the pediatric intensive care unit: a multidisciplinary approach. Pediatr Crit Care Med 2012; 13: e69-72
  • 36 Fisher D, Cochran KM, Provost LP et al. Reducing central line-associated bloodstream infections in North Carolina NICUs. Pediatrics 2013; 132: e1664-1671
  • 37 Smulders CA, van Gestel JP, Bos AP. Are central line bundles and ventilator bundles effective in critically ill neonates and children?. Intensive Care Med 2013; 39: 1352-1358
  • 38 Ting JY, Goh VS, Osiovich H. Reduction of central line-associated bloodstream infection rates in a neonatal intensive care unit after implementation of a multidisciplinary evidence-based quality improvement collaborative: A four-year surveillance. The Canadian journal of infectious diseases & medical microbiology 2013; 24: 185-190
  • 39 Miller MR, Griswold M, Harris JM et al. Decreasing PICU catheter-associated bloodstream infections: NACHRI's quality transformation efforts. Pediatrics 2010; 125: 206-213
  • 40 Quach C, Milstone AM, Perpete C et al. Chlorhexidine bathing in a tertiary care neonatal intensive care unit: impact on central line-associated bloodstream infections. Infect Control Hosp Epidemiol 2014; 35: 158-163
  • 41 Dettenkofer M, Wilson C, Gratwohl A et al. Skin disinfection with octenidine dihydrochloride for central venous catheter site care: a double-blind, randomized, controlled trial. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2010; 16: 600-606
  • 42 O'Grady NP, Alexander M, Burns LA et al. Guidelines for the prevention of intravascular catheter-related infections. Am J of infection control 2011; 39: 1-34
  • 43 Shah PS, Shah N. Heparin-bonded catheters for prolonging the patency of central venous catheters in children. Cochrane Database Syst Rev 2014; 2: CD005983
  • 44 Inglis GD, Jardine LA, Davies MW. Prophylactic antibiotics to reduce morbidity and mortality in neonates with umbilical artery catheters. Cochrane Database Syst Rev 2007; CD004697. pub3: CD004697 DOI: DOI: 10.1002/14651858.
  • 45 Shah PS, Kalyn A, Satodia P et al. A randomized, controlled trial of heparin versus placebo infusion to prolong the usability of peripherally placed percutaneous central venous catheters (PCVCs) in neonates: the HIP (Heparin Infusion for PCVC) study. Pediatrics 2007; 119: e284-291
  • 46 Vidal E, Sharathkumar A, Glover J et al. Central venous catheter-related thrombosis and thromboprophylaxis in children: a systematic review and meta-analysis. J Thromb Haemost 2014; 12: 1096-1109
  • 47 Monagle P, Chan AK, Goldenberg NA et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e737S-801S
  • 48 Tobias JDM, Bhalla T. Ultrasound for central venous, arterial and peripheral venous cannulation in the pediatric population. Pediatric Anesthesia and Critical Care Journal 2014; 2: 93-101
  • 49 Schwemmer U, Arzet HA, Trautner H et al. Ultrasound-guided arterial cannulation in infants improves success rate. Eur J Anaesthesiol 2006; 23: 476-480
  • 50 Ishii S, Shime N, Shibasaki M et al. Ultrasound-guided radial artery catheterization in infants and small children. Pediatr Crit Care Med 2013; 14: 471-473
  • 51 Ganesh A, Kaye R, Cahill AM et al. Evaluation of ultrasound-guided radial artery cannulation in children. Pediatr Crit Care Med 2009; 10: 45-48
  • 52 Khilnani PK. Learning curve for arterial cannulation using ultrasound: a myth or reality?. Pediatr Crit Care Med 2013; 14: 545-546
  • 53 Varga EQ, Candiotti KA, Saltzman B et al. Evaluation of distal radial artery cross-sectional internal diameter in pediatric patients using ultrasound. Paediatr Anaesth 2013; 23: 460-462
  • 54 Schindler E, Schears GJ, Hall SR et al. Ultrasound for vascular access in pediatric patients. Paediatric anesthesia 2012; 22: 1002-1007