Horm Metab Res 2015; 47(01): 48-55
DOI: 10.1055/s-0034-1394372
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

The Relative Merits of Cord Blood as a Cell Source for Autologous T Regulatory Cell Therapy in Type 1 Diabetes

A. Theil
1   DFG-Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
,
C. Wilhelm
1   DFG-Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
,
E. Guhr
1   DFG-Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
,
J. Reinhardt
1   DFG-Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
,
E. Bonifacio
1   DFG-Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
› Author Affiliations
Further Information

Publication History

received 11 July 2014

accepted 22 September 2014

Publication Date:
05 November 2014 (online)

Abstract

Cord blood has been used as a cell source for therapeutic purposes in children with type 1 diabetes and other disorders. Here, we explore the benefits of cord blood as an autologous source of T regulatory cells for immune cell therapy in patients. CD4+CD25+ T regulatory cells were isolated from cord blood and adult peripheral blood of healthy donors and compared during and after expansion in a 14-day protocol incorporating anti-CD3/anti-CD28 beads, and IL-2 with or without rapamycin. Cord blood T regulatory cells were largely naïve (89±7 vs. 31±10% in young adults, p<0.0001), and had higher expansion yields (median 5 968-fold) than adult T regulatory cells (median 516-fold, p=0.001) and adult naïve T regulatory cells (median 820-fold, p=0.003). Rapamycin reduced expansion yields, but was not necessary to obtain pure expanded cord blood T regulatory cells as judged by FOXP3 staining (94±3%), methylation status of FOXP3 (97%), and intracellular effector cytokine staining (< 6%). Expanded adult T regulatory cells were much less pure in the absence of rapamycin (72±19% FOXP3; 76% by methylation status, <13% INF-γ, <16% IL-4, <5% IL-17 positive), but purity was achieved by inclusion of rapamycin during expansion. Despite differences in purity, all preparations of expanded T regulatory from all sources were able to strongly suppress proliferation of T effector cells in vitro. Our findings suggest that cord blood is an excellent source of T regulatory cells for expansion and autologous cell therapy that may be considered as a strategy to prevent immune-mediated destruction of beta cells in type 1 diabetes.

 
  • References

  • 1 Trzonkowski P, Bieniaszewska M, Juscinska J, Dobyszuk A, Krzystyniak A, Marek N, Mysliwska J, Hellmann A. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin Immunol 2009; 133: 22-26
  • 2 Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, Defor T, Levine BL, June CH, Rubinstein P, McGlave PB, Blazar BR, Wagner JE. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117: 1061-1070
  • 3 Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, Wujtewicz MA, Witkowski P, Mlynarski W, Balcerska A, Mysliwska J, Trzonkowski P. Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care 2012; 35: 1817-1820
  • 4 Marek-Trzonkowska N, Mysliwec M, Siebert J, Trzonkowski P. Clinical application of regulatory T cells in type 1 diabetes. Pediatr Diabetes 2013; 14: 322-332
  • 5 Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203: 1701-1711
  • 6 Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, Atkinson MA, Bluestone JA. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 2009; 58: 652-662
  • 7 Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional Delineation and Differentiation Dynamics of Human CD4(+) T Cells Expressing the FoxP3 Transcription Factor. Immunity 2009; 30: 899-911
  • 8 Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G, Olek S, Dietmaier W, Andreesen R, Edinger M. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol 2009; 39: 1088-1097
  • 9 Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, Edinger M. Only the CD45RA+subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 2006; 108: 4260-4267
  • 10 Takahata Y, Nomura A, Takada H, Ohga S, Furuno K, Hikino S, Nakayama H, Sakaguchi S, Hara T. CD25+CD4+T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol 2004; 32: 622-629
  • 11 Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL, June CH, Blazar BR, Porter SB. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105: 750-758
  • 12 Fuchizawa T, Adachi Y, Ito Y, Higashiyama H, Kanegane H, Futatani T, Kobayashi I, Kamachi Y, Sakamoto T, Tsuge I, Tanaka H, Banham AH, Ochs HD, Miyawaki T. Developmental changes of FOXP3-expressing CD4+CD25+ regulatory T cells and their impairment in patients with FOXP3 gene mutations. Clin Immunol 2007; 125: 237-246
  • 13 Fritzsching B, Oberle N, Pauly E, Geffers R, Buer J, Poschl J, Krammer P, Linderkamp O, Suri-Payer E. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood 2006; 108: 3371-3378
  • 14 Lee MW, Jang IK, Yoo KH, Sung KW, Koo HH. Stem and progenitor cells in human umbilical cord blood. Int J Hematol 2010; 92: 45-51
  • 15 Forraz N, McGuckin CP. The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 2011; 44 (Suppl. 01) 60-69
  • 16 Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM, Sumrall TM, Wingard JR, Theriaque DW, Shuster JJ, Atkinson MA, Schatz DA. Autologous Umbilical Cord Blood Transfusion in Young Children With Type 1 Diabetes Fails to Preserve C-Peptide. Diabetes Care 2011; 34: 2567-2569
  • 17 Haller MJ, Wasserfall CH, McGrail KM, Cintron M, Brusko TM, Wingard JR, Kelly SS, Shuster JJ, Atkinson MA, Schatz DA. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care 2009; 32: 2041-2046
  • 18 Giannopoulou EZ, Puff R, Beyerlein A, von Luettichau I, Boerschmann H, Schatz D, Atkinson M, Haller MJ, Egger D, Burdach S, Ziegler AG. Effect of a single autologous cord blood infusion on beta-cell and immune function in children with new onset type 1 diabetes: a non-randomized, controlled trial. Pediatr Diabetes 2014; 15: 100-109
  • 19 Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, Defor T, Levine BL, June CH, Rubinstein P, McGlave PB, Blazar BR, Wagner JE. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117: 1061-1070
  • 20 Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Turbachova I, Hamann A, Olek S, Huehn J. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 2007; 37: 2378-2389
  • 21 Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005; 105: 4743-4748
  • 22 Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 2006; 177: 8338-8347
  • 23 Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J, Hou JZ, Negrin RS. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+regulatory T cells compared with conventional CD4+T cells. Blood 2008; 111: 453-462
  • 24 Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+T cells. Nature immunology 2007; 8: 1353-1362
  • 25 Monti P, Scirpoli M, Rigamonti A, Mayr A, Jaeger A, Bonfanti R, Chiumello G, Ziegler AG, Bonifacio E. Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol 2007; 179: 5785-5792
  • 26 Tresoldi E, Dell’albani I, Stabilini A, Jofra T, Valle A, Gagliani N, Bondanza A, Roncarolo MG, Battaglia M. Stability of human rapamycin-expanded CD4+CD25+T regulatory cells. Haematologica 2011; 96: 1357-1365
  • 27 Hippen KL, Harker-Murray P, Porter SB, Merkel SC, Londer A, Taylor DK, Bina M, Panoskaltsis-Mortari A, Rubinstein P, Van Rooijen N, Golovina TN, Suhoski MM, Miller JS, Wagner JE, June CH, Riley JL, Blazar BR. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood 2008; 112: 2847-2857
  • 28 Valmori D, Tosello V, Souleimanian NE, Godefroy E, Scotto L, Wang Y, Ayyoub M. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+T cells. J Immunol 2006; 177: 944-949