Informationen aus Orthodontie & Kieferorthopädie 2014; 46(04): 235-239
DOI: 10.1055/s-0034-1395598
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Ist die Temperaturentwicklung beim Debonding bei allen rotierenden zahnärztlichen Instrumenten gleich?

Is the Temperature Development During Debonding Identical for all Rotating Dental Instruments?
R. Biedermann
1   Universitätsklinik für Kieferorthopädie, Medizinische Universität Innsbruck, Österreich
,
K. Winter
1   Universitätsklinik für Kieferorthopädie, Medizinische Universität Innsbruck, Österreich
,
A. G. Crismani
1   Universitätsklinik für Kieferorthopädie, Medizinische Universität Innsbruck, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
07 January 2015 (online)

Zusammenfassung

Als kritischer Punkt des Debondings kann die Temperaturentwicklung der Pulpa gesehen werden. Die intrapulpäre Temperatur darf einen gewissen Schwellenwert nicht überschreiten, um keine bleibenden Schäden in Form einer iatrogenen Pulpitis herbeizuführen.

Ziel: In dieser In-vitro-Studie wurden im Hinblick auf Temperaturveränderungen im Pulpenkavum verschiedene Finiermethoden im Rahmen von Adhäsiventfernung untersucht.

Material und Methoden: An 105 extrahierten Inzisivi wurden in 7 Gruppen verglichen: (1) ein Hartmetallfinierer mit 12 Schneiden – H284, (2) ein Klebstoffentferner mit 8 Schneiden – H22ALGK, (3) ein Hartmetallfinierer mit 18 Schneiden – Renew 218 und (4) eine Soflexscheibe schwarz mit verschiedenen Kühlmethoden, (A) Wasserkühlung oder (B) Luftkühlung.

Ergebnisse: In 5 der 7 untersuchten Gruppen konnte eine statistisch hochsignifikante (p<0,001) Temperaturerniedrigung festgestellt werden. In den beiden übrigen Versuchsgruppen war keine statistisch signifikante Abweichung von der Ausgangstemperatur (37+°C) zu erkennen. Die zur Kleberentfernung benötigte Zeitdauer reichte von 00:28 min bis 04:01 min.

Conclusio: Alle zum Debonding verwendeten Finierinstrumente eignen sich im Hinblick auf die Temperaturveränderungen im Pulpenkavum zur Adhäsiventfernung. Um eine definitive Empfehlung abgeben zu können, sollte eine weitere Untersuchung der Schmelzoberfläche erfolgen.

Abstract

A critical point of debonding is the temperature change in the pulp. The temperature in the pulp must not exceed a specific threshold, in order to avoid damages like an iatrogenic pulpitis.

Aim of this study: In this in vitro study different methods of finishing within the scope of removal of adhesives were investigated with regard to temperature changes in the pulp cavum.

Materials and methods: A total of 105 extracted incisors were divided in 7 groups and compared by using

(1) a carbide finishing bur with 12 blades – H284, (2) adhesive removing bur with 8 blades – H22ALGK, (3) a carbide finishing bur with 18 blades – Renew 218 and (4) a Soflex disc black with different cooling methods such as (A) water or (B) air chilling.

Results: In 5 out of 7 investigation groups, a statistically significant high (p<0,001) temperature depression was found. In the 2 remaining investigation groups no statistically significant changes of the initial temperature (37°) were recognized. The time needed for adhesive removal reached from 00:28 min to 04:01 min.

Conclusio: All finishing instruments used for debonding were suitable for adhesive removal with regard to temperature changes of the pulp. Further investigations of the enamel surface should be carried out in order to make a definite recommendation for finishing instruments.

 
  • Literatur

  • 1 Baysal A, Uysal T, Usumez S. Temperature rise in the pulp chamber during different stripping procedures. Angle Orthod 2007; 77: 478-482
  • 2 Bhaskar SN, Lilly GE. Intrapulpal Temperature during cavity preparation. J Dent Res 1965; 44: 644-647
  • 3 Bicakci AA, Kocoglu-Altan B, Celik-Ozenci C et al. Histopathologic evaluation of pulpal tissue response to various adhesive cleanup techniques. Am J Orthod Dentofacial Orthop 2010; Jul 138: 12.e1-12.e7 discussion 12–13
  • 4 Chan KH. Rapid and selective removal of composite from tooth surfaces with a 9.3μm Co2 laser using spectral feedback. Lasers Surg Med 2011; 43: 824-832
  • 5 Chiodera G, Gastaldi G, Millar BJ. Temperature change in pulp cavity in vitro during the polymerization of provisional resins. Dent Mater 2009; 25: 321-325
  • 6 Crooks M, Hood J, Harkness M. Thermal debonding of ceramic brackets: an in vitro study. Am J Orthod Dentofacial Orthop 1997; 111: 163-172
  • 7 Daronch M, Rueggeberg FA, Hall G et al. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007; 23: 1283-1288
  • 8 Ercoli C, Rotella M, Funkenbusch PD et al. In vitro comparison of the cutting efficiency and temperature production of ten different rotary cutting instruments. Part I: Turbine. J Prosthet Dent 2009; 101: 248-261
  • 9 Ercoli C, Rotella M, Funkenbusch PD et al. In vitro comparison of the cutting efficiency and temperature production of ten different rotary cutting instruments. Part II: electric handpiece and comparison with turbine. J Prosthet Dent 2009; 101: 319-331
  • 10 Gängler P. Das Verhalten der Blutzirkulation der Pulpa auf thermische Reize. Zahn Mund Kieferheilkd. Zentralbl 1976; 64: 480-486
  • 11 Hannig M., Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999; 15: 275-281
  • 12 Jonke E, Weiland F, Freudenthaler JW et al. Heat generated by residual adhesive removal after debonding of brackets. World. J Orthod 2006; 7: 357-360
  • 13 Jost-Brinkmann PG, Radlanski RJ, Artun J et al. Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets. Eur J Orthod 1997; 19: 623-628
  • 14 Jost-Brinkmann PG, Stein H, Miethke RR et al. Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets. Am J Orthod Dentofacial Orthop 1992; 102: 410-417
  • 15 Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent 2009; 37: 485-490
  • 16 Lee-Knight CT, Wylie SG, Major PW et al. Mechanical and electrothermal debonding: effect on ceramic veneers an dental pulp. Am J Orthod Dentofacial Orthop 1997; 112: 263-270
  • 17 Lisanti VF, Zander HA. Thermal injury to normal dog teeth: in vivo measurements of pulp temperature increases and their effect on the pulp tissue. J Dent Res 1952; 31: 548-558
  • 18 Ma T, Marangoni RD, Flint W. In vitro comparison of debonding force and intrapulpal temperature changes during ceramic orthodontic bracket removal using a carbon dioxide laser. Am J Orthod Dentofacial Orthop 1997; 111: 203-210
  • 19 Malkoç S, Uysal T, Usümez S et al. In-vitro assessment of termperature rise in the pulp during orthodontic bonding. Am J Orthod Dentofacial Orthop 2010; 137: 379-383
  • 20 Mank S, Steineck M, Brauchli L. Influence of various polishing methods on pulp temperature: An in vitro study. J Orofac Orthop 2011; 72: 348-357
  • 21 Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006; 96: 328-331
  • 22 Mizrahi E, Cleaton-Jones P, Landy C. Tooth surface and pulp chamber temperatures developed during electrothermal bonding. Am J. Orthod Dentofacial Orthop 1996; 109: 506-514
  • 23 Nyborg H, Brannström M. Pulp Reaction to heat. J Prosthet Dent 1968; 19: 605-612
  • 24 Obata A, Tsumura T, Niwa K et al. Super pulse CO2 laser for bracket bonding and debonding. Eur J Orthod 1999; 21: 193-198
  • 25 Oztürk B, Usümez A, Oztürk AN et al. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 2004; 91: 436-440
  • 26 Pohto M, Scheinin A. Microscopic Observations on Living Dental Pulp II. The Effect of Thermal Irritants on the Circulation of the Pulp in the Lower Rat Incisor. Acta Odontol Scand 1958; 16: 315-327
  • 27 Raab WH. Temperature related changes in pulpal microcirculation. Proc Finn Dent Soc 1992; 88: 469-479
  • 28 Rickabaugh JL, Marangoni RD, McCaffrey KK. Ceramic bracket debonding with the carbon dioxide laser. Am J Orthod Dentofacial Orthop 1996; 110: 388-393
  • 29 Schuchard A. A histologic assessment of low-torque, ultrahigh-speed cutting technique. J Prosthet Dent 1975; 34: 644-651
  • 30 Sheridan JJ, Brawley G, Hastings J. Electrothermal debracketing. Part I. An in vitro study. Am J Orthod 1986; 89: 21-27
  • 31 Strobl K, Bahns TL, Willham L et al. Laser-aided debonding of orthodontic ceramic brackets. Am.J Orthod Dentofacial Orthop 1992; 101: 152-158
  • 32 Sulieman M, Addy M, Rees JS. Surface and intra-pulpal temperature rises during tooth bleaching: an in vitro study. Br Dent J 2005; 199: 37-40 discussion 32
  • 33 Takla PM, Shivapuja PK. Pulpal response in electrothermal debonding. Am J Orthod Dentofacial Orthop 1995; 108: 623-629
  • 34 Uysal T, Eldeniz AU, Usumez S et al. Thermal changes in the pulp chamber during different adhesive clean-up procedures. Angle Orthod 2005; 75: 220-225
  • 35 Vukovich ME, Wood DP, Daley TD. Heat generated by grinding during removal of ceramic brackets. Am J Orthod Dentofacial Orthop 1991; 99: 505-512
  • 36 Watson TF, Flanagan D, Stone DG. High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature. Br Dent J 2000; 188: 680-686
  • 37 Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965; 19: 515-530
  • 38 Zachrisson BU. JCO/interviews Dr. Bjorn U. Zachrisson on excellence in finishing. Part 1. J Clin Orthod 1986; 20: 460-482