Semin Reprod Med 2015; 33(03): 195-207
DOI: 10.1055/s-0035-1552582
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Emerging Role of Angiogenic Factor Dysregulation in the Pathogenesis of Polycystic Ovarian Syndrome

Reshef Tal
1   Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
,
David B. Seifer
2   Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
,
Aydin Arici
1   Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
› Author Affiliations
Further Information

Publication History

Publication Date:
02 June 2015 (online)

Abstract

Polycystic ovarian syndrome (PCOS) is a common endocrine disorder in reproductive age affecting 5 to 7% of women. It is characterized by anovulatory infertility, hyperandrogenism, and polycystic ovaries. Angiogenesis in the ovary is critical for follicular growth, ovulation, and the subsequent development and regression of the corpus luteum. Accumulating evidence suggests that multiple angiogenic factors are dysregulated in PCOS, including vascular endothelial growth factor, angiopoietins, platelet-derived growth factor, transforming growth factor-β, and basic fibroblast growth factor. This angiogenic factor imbalance likely underlies the increased stromal vascularity observed in PCOS. Angiogenic factor dysregulation may play an important role in the pathophysiology of PCOS and may contribute to ovulatory dysfunction, subfertility, and ovarian hyperstimulation syndrome, which are commonly seen in women with PCOS. Further experimental studies are needed to gain a better understanding of the growth factors that are involved in normal and pathological ovarian angiogenesis, and to assess the potential of angiogenesis-based treatment strategies in PCOS.

 
  • References

  • 1 Padmanabhan V. Polycystic ovary syndrome—“A riddle wrapped in a mystery inside an enigma”. J Clin Endocrinol Metab 2009; 94 (6) 1883-1885
  • 2 Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 2011; 17 (1) 17-33
  • 3 Fraser HM, Wulff C. Angiogenesis in the corpus luteum. Reprod Biol Endocrinol 2003; 1: 88
  • 4 Hazzard TM, Christenson LK, Stouffer RL. Changes in expression of vascular endothelial growth factor and angiopoietin-1 and -2 in the macaque corpus luteum during the menstrual cycle. Mol Hum Reprod 2000; 6 (11) 993-998
  • 5 Wulff C, Wilson H, Largue P, Duncan WC, Armstrong DG, Fraser HM. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab 2000; 85 (11) 4302-4309
  • 6 Sugino N, Suzuki T, Sakata A , et al. Angiogenesis in the human corpus luteum: changes in expression of angiopoietins in the corpus luteum throughout the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab 2005; 90 (11) 6141-6148
  • 7 Geva E, Jaffe RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil Steril 2000; 74 (3) 429-438
  • 8 Peitsidis P, Agrawal R. Role of vascular endothelial growth factor in women with PCO and PCOS: a systematic review. Reprod Biomed Online 2010; 20 (4) 444-452
  • 9 Ferrara N, Frantz G, LeCouter J , et al. Differential expression of the angiogenic factor genes vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF in normal and polycystic human ovaries. Am J Pathol 2003; 162 (6) 1881-1893
  • 10 Kamat BR, Brown LF, Manseau EJ, Senger DR, Dvorak HF. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development. Am J Pathol 1995; 146 (1) 157-165
  • 11 Aleem FA, Predanic M. Transvaginal color Doppler determination of the ovarian and uterine blood flow characteristics in polycystic ovary disease. Fertil Steril 1996; 65 (3) 510-516
  • 12 Agrawal R, Sladkevicius P, Engmann L , et al. Serum vascular endothelial growth factor concentrations and ovarian stromal blood flow are increased in women with polycystic ovaries. Hum Reprod 1998; 13 (3) 651-655
  • 13 Artini PG, Monti M, Matteucci C, Valentino V, Cristello F, Genazzani AR. Vascular endothelial growth factor and basic fibroblast growth factor in polycystic ovary syndrome during controlled ovarian hyperstimulation. Gynecol Endocrinol 2006; 22 (8) 465-470
  • 14 Amin AF, Abd el-Aal DE, Darwish AM, Meki AR. Evaluation of the impact of laparoscopic ovarian drilling on Doppler indices of ovarian stromal blood flow, serum vascular endothelial growth factor, and insulin-like growth factor-1 in women with polycystic ovary syndrome. Fertil Steril 2003; 79 (4) 938-941
  • 15 Artini PG, Ruggiero M, Parisen Toldin MR , et al. Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Hum Fertil (Camb) 2009; 12 (1) 40-44
  • 16 Tal R, Seifer DB, Grazi RV, Malter HE. Angiopoietin-1 and angiopoietin-2 are altered in polycystic ovarian syndrome (PCOS) during controlled ovarian stimulation. Vasc Cell 2013; 5 (1) 18
  • 17 Scotti L, Parborell F, Irusta G , et al. Platelet-derived growth factor BB and DD and angiopoietin1 are altered in follicular fluid from polycystic ovary syndrome patients. Mol Reprod Dev 2014; 81 (8) 748-756
  • 18 Tal R, Seifer DB, Grazi RV, Malter HE. Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation. Reprod Biol Endocrinol 2014; 12: 82
  • 19 Tal R, Seifer DB, Shohat-Tal A, Grazi RV, Malter HE. Transforming growth factor-β1 and its receptor soluble endoglin are altered in polycystic ovary syndrome during controlled ovarian stimulation. Fertil Steril 2013; 100 (2) 538-543
  • 20 Raja-Khan N, Kunselman AR, Demers LM, Ewens KG, Spielman RS, Legro RS. A variant in the fibrillin-3 gene is associated with TGF-β and inhibin B levels in women with polycystic ovary syndrome. Fertil Steril 2010; 94 (7) 2916-2919
  • 21 Soares SR, Gómez R, Simón C, García-Velasco JA, Pellicer A. Targeting the vascular endothelial growth factor system to prevent ovarian hyperstimulation syndrome. Hum Reprod Update 2008; 14 (4) 321-333
  • 22 Gargett CE, Rogers PA. Human endometrial angiogenesis. Reproduction 2001; 121 (2) 181-186
  • 23 Torry RJ, Rongish BJ. Angiogenesis in the uterus: potential regulation and relation to tumor angiogenesis. Am J Reprod Immunol 1992; 27 (3-4) 171-179
  • 24 Fraser HM, Lunn SF. Angiogenesis and its control in the female reproductive system. Br Med Bull 2000; 56 (3) 787-797
  • 25 Smith SK. Angiogenesis, vascular endothelial growth factor and the endometrium. Hum Reprod Update 1998; 4 (5) 509-519
  • 26 Stouffer RL, Martínez-Chequer JC, Molskness TA, Xu F, Hazzard TM. Regulation and action of angiogenic factors in the primate ovary. Arch Med Res 2001; 32 (6) 567-575
  • 27 Wulff C, Wiegand SJ, Saunders PT, Scobie GA, Fraser HM. Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology 2001; 142 (7) 3244-3254
  • 28 Wulff C, Wilson H, Wiegand SJ, Rudge JS, Fraser HM. Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 2002; 143 (7) 2797-2807
  • 29 Augustin H. Development of the vascular system of the corpus luteum. In: Risau W, Rubanyi GM. Morphogenesis of Endothelium. Reading, UK: Harwood Academic Publishers; 2000: 237-254
  • 30 Hazzard TM, Stouffer RL. Angiogenesis in ovarian follicular and luteal development. Best Pract Res Clin Obstet Gynaecol 2000; 14 (6) 883-900
  • 31 Fraser HM, Duncan WC. Vascular morphogenesis in the primate ovary. Angiogenesis 2005; 8 (2) 101-116
  • 32 Fraser HM, Duncan WC. SRB Reproduction, Fertility and Development Award Lecture 2008. Regulation and manipulation of angiogenesis in the ovary and endometrium. Reprod Fertil Dev 2009; 21 (3) 377-392
  • 33 Barboni B, Turriani M, Galeati G , et al. Vascular endothelial growth factor production in growing pig antral follicles. Biol Reprod 2000; 63 (3) 858-864
  • 34 Celik-Ozenci C, Akkoyunlu G, Kayisli UA, Arici A, Demir R. Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: a possible role in destiny of follicles. Histochem Cell Biol 2003; 120 (5) 383-390
  • 35 Fraser HM, Wulff C. Angiogenesis in the primate ovary. Reprod Fertil Dev 2001; 13 (7-8) 557-566
  • 36 Greenaway J, Connor K, Pedersen HG, Coomber BL, LaMarre J, Petrik J. Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology 2004; 145 (6) 2896-2905
  • 37 Maisonpierre PC, Suri C, Jones PF , et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277 (5322) 55-60
  • 38 Rowe AJ, Morris KD, Bicknell R, Fraser HM. Angiogenesis in the corpus luteum of early pregnancy in the marmoset and the effects of vascular endothelial growth factor immunoneutralization on establishment of pregnancy. Biol Reprod 2002; 67 (4) 1180-1188
  • 39 Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J Clin Invest 1993; 91 (5) 2235-2243
  • 40 Zimmermann RC, Hartman T, Kavic S , et al. Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development. J Clin Invest 2003; 112 (5) 659-669
  • 41 Thurston G, Rudge JS, Ioffe E , et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6 (4) 460-463
  • 42 Xu F, Stouffer RL. Local delivery of angiopoietin-2 into the preovulatory follicle terminates the menstrual cycle in rhesus monkeys. Biol Reprod 2005; 72 (6) 1352-1358
  • 43 Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J Endocrinol 2000; 167 (3) 371-382
  • 44 Robinson RS, Nicklin LT, Hammond AJ, Schams D, Hunter MG, Mann GE. Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle-luteal transition in the cow. Biol Reprod 2007; 77 (1) 28-36
  • 45 Berisha B, Steffl M, Amselgruber W, Schams D. Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction 2006; 131 (2) 319-329
  • 46 Woad KJ, Hunter MG, Mann GE, Laird M, Hammond AJ, Robinson RS. Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction 2012; 143 (1) 35-43
  • 47 Yamashita H, Kamada D, Shirasuna K , et al. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol Reprod Dev 2008; 75 (9) 1449-1456
  • 48 Seli E, Zeyneloglu HB, Senturk LM, Bahtiyar OM, Olive DL, Arici A. Basic fibroblast growth factor: peritoneal and follicular fluid levels and its effect on early embryonic development. Fertil Steril 1998; 69 (6) 1145-1148
  • 49 Sleer LS, Taylor CC. Platelet-derived growth factors and receptors in the rat corpus luteum: localization and identification of an effect on luteogenesis. Biol Reprod 2007; 76 (3) 391-400
  • 50 Kuhnert F, Tam BY, Sennino B , et al. Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci U S A 2008; 105 (29) 10185-10190
  • 51 Chegini N, Flanders KC. Presence of transforming growth factor-beta and their selective cellular localization in human ovarian tissue of various reproductive stages. Endocrinology 1992; 130 (3) 1707-1715
  • 52 Chegini N, Williams RS. Immunocytochemical localization of transforming growth factors (TGFs) TGF-alpha and TGF-beta in human ovarian tissues. J Clin Endocrinol Metab 1992; 74 (5) 973-980
  • 53 Roy SK. Regulation of transforming growth factor-beta-receptor type I and type II messenger ribonucleic acid expression in the hamster ovary by gonadotropins and steroid hormones. Biol Reprod 2000; 62 (6) 1858-1865
  • 54 Kuo SW, Ke FC, Chang GD, Lee MT, Hwang JJ. Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFβ1) in the regulation of ovarian angiogenesis. J Cell Physiol 2011; 226 (6) 1608-1619
  • 55 Hughesdon PE. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called “hyperthecosis”. Obstet Gynecol Surv 1982; 37 (2) 59-77
  • 56 Webber LJ, Stubbs S, Stark J , et al. Formation and early development of follicles in the polycystic ovary. Lancet 2003; 362 (9389) 1017-1021
  • 57 Zaidi J, Campbell S, Pittrof R , et al. Ovarian stromal blood flow in women with polycystic ovaries—a possible new marker for diagnosis?. Hum Reprod 1995; 10 (8) 1992-1996
  • 58 Pan HA, Wu MH, Cheng YC, Li CH, Chang FM. Quantification of Doppler signal in polycystic ovary syndrome using three-dimensional power Doppler ultrasonography: a possible new marker for diagnosis. Hum Reprod 2002; 17 (1) 201-206
  • 59 Loverro G, Vicino M, Lorusso F, Vimercati A, Greco P, Selvaggi L. Polycystic ovary syndrome: relationship between insulin sensitivity, sex hormone levels and ovarian stromal blood flow. Gynecol Endocrinol 2001; 15 (2) 142-149
  • 60 Engmann L, Sladkevicius P, Agrawal R, Bekir J, Campbell S, Tan SL. The pattern of changes in ovarian stromal and uterine artery blood flow velocities during in vitro fertilization treatment and its relationship with outcome of the cycle. Ultrasound Obstet Gynecol 1999; 13 (1) 26-33
  • 61 Järvelä IY, Mason HD, Sladkevicius P , et al. Characterization of normal and polycystic ovaries using three-dimensional power Doppler ultrasonography. J Assist Reprod Genet 2002; 19 (12) 582-590
  • 62 Abd El Aal DE, Mohamed SA, Amine AF, Meki AR. Vascular endothelial growth factor and insulin-like growth factor-1 in polycystic ovary syndrome and their relation to ovarian blood flow. Eur J Obstet Gynecol Reprod Biol 2005; 118 (2) 219-224
  • 63 Battaglia C, Artini PG, D'Ambrogio G, Genazzani AD, Genazzani AR. The role of color Doppler imaging in the diagnosis of polycystic ovary syndrome. Am J Obstet Gynecol 1995; 172 (1, Pt 1) 108-113
  • 64 Järvelä IY, Sladkevicius P, Kelly S, Ojha K, Campbell S, Nargund G. Comparison of follicular vascularization in normal versus polycystic ovaries during in vitro fertilization as measured using 3-dimensional power Doppler ultrasonography. Fertil Steril 2004; 82 (5) 1358-1363
  • 65 Costello MF, Shrestha SM, Sjoblom P , et al. Power Doppler ultrasound assessment of ovarian perifollicular blood flow in women with polycystic ovaries and normal ovaries during in vitro fertilization treatment. Fertil Steril 2005; 83 (4) 945-954
  • 66 Palomba S, Orio Jr F, Falbo A, Russo T, Tolino A, Zullo F. Effects of metformin and clomiphene citrate on ovarian vascularity in patients with polycystic ovary syndrome. Fertil Steril 2006; 86 (6) 1694-1701
  • 67 Delgado-Rosas F, Gaytán M, Morales C, Gómez R, Gaytán F. Superficial ovarian cortex vascularization is inversely related to the follicle reserve in normal cycling ovaries and is increased in polycystic ovary syndrome. Hum Reprod 2009; 24 (5) 1142-1151
  • 68 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18 (1) 4-25
  • 69 Tischer E, Mitchell R, Hartman T , et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266 (18) 11947-11954
  • 70 Poltorak Z, Cohen T, Sivan R , et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 1997; 272 (11) 7151-7158
  • 71 Lei J, Jiang A, Pei D. Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183. Biochim Biophys Acta 1998; 1443 (3) 400-406
  • 72 Charnock-Jones DS, Sharkey AM, Rajput-Williams J , et al. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod 1993; 48 (5) 1120-1128
  • 73 Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994; 269 (41) 25646-25654
  • 74 Olofsson B, Korpelainen E, Pepper MS , et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci U S A 1998; 95 (20) 11709-11714
  • 75 Agrawal R, Conway G, Sladkevicius P , et al. Serum vascular endothelial growth factor and Doppler blood flow velocities in in vitro fertilization: relevance to ovarian hyperstimulation syndrome and polycystic ovaries. Fertil Steril 1998; 70 (4) 651-658
  • 76 Agrawal R, Jacobs H, Payne N, Conway G. Concentration of vascular endothelial growth factor released by cultured human luteinized granulosa cells is higher in women with polycystic ovaries than in women with normal ovaries. Fertil Steril 2002; 78 (6) 1164-1169
  • 77 Tulandi T, Saleh A, Morris D, Jacobs HS, Payne NN, Tan SL. Effects of laparoscopic ovarian drilling on serum vascular endothelial growth factor and on insulin responses to the oral glucose tolerance test in women with polycystic ovary syndrome. Fertil Steril 2000; 74 (3) 585-588
  • 78 Stanek MB, Borman SM, Molskness TA, Larson JM, Stouffer RL, Patton PE. Insulin and insulin-like growth factor stimulation of vascular endothelial growth factor production by luteinized granulosa cells: comparison between polycystic ovarian syndrome (PCOS) and non-PCOS women. J Clin Endocrinol Metab 2007; 92 (7) 2726-2733
  • 79 Tropea A, Lanzone A, Tiberi F, Romani F, Catino S, Apa R. Estrogens and androgens affect human luteal cell function. Fertil Steril 2010; 94 (6) 2257-2263
  • 80 Pellatt L, Rice S, Mason HD. Anti-Müllerian hormone and polycystic ovary syndrome: a mountain too high?. Reproduction 2010; 139 (5) 825-833
  • 81 Xu J, Xu M, Bernuci MP , et al. Primate follicular development and oocyte maturation in vitro. Adv Exp Med Biol 2013; 761: 43-67
  • 82 Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407 (6801) 242-248
  • 83 Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9 (6) 653-660
  • 84 Hurliman AK, Speroff L, Stouffer RL, Patton PE, Lee A, Molskness TA. Changes in circulating levels and ratios of angiopoietins during pregnancy but not during the menstrual cycle and controlled ovarian stimulation. Fertil Steril 2010; 93 (5) 1493-1499
  • 85 Sova H, Morin-Papunen L, Puistola U, Karihtala P. Distinctively low levels of serum 8-hydroxydeoxyguanosine in women with polycystic ovary syndrome. Fertil Steril 2010; 94 (7) 2670-2673
  • 86 Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S. Altered expression of angiopoietins during blood-brain barrier breakdown and angiogenesis. Lab Invest 2003; 83 (8) 1211-1222
  • 87 Roviezzo F, Tsigkos S, Kotanidou A , et al. Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 2005; 314 (2) 738-744
  • 88 Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990; 6: 597-641
  • 89 Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril 2002; 78 (1) 1-12
  • 90 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425 (6958) 577-584
  • 91 Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science 2002; 296 (5573) 1646-1647
  • 92 Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massagué J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 1990; 62 (1) 175-185
  • 93 Satterwhite DJ, Moses HL. Mechanisms of transforming growth factor-beta 1-induced cell cycle arrest. Invasion Metastasis 1994– 1995; 14 (1–6) 309-318
  • 94 Rotello RJ, Lieberman RC, Purchio AF, Gerschenson LE. Coordinated regulation of apoptosis and cell proliferation by transforming growth factor beta 1 in cultured uterine epithelial cells. Proc Natl Acad Sci U S A 1991; 88 (8) 3412-3415
  • 95 Hyman KM, Seghezzi G, Pintucci G , et al. Transforming growth factor-beta1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase. Surgery 2002; 132 (2) 173-179
  • 96 Yang EY, Moses HL. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 1990; 111 (2) 731-741
  • 97 Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998; 16: 137-161
  • 98 Ignotz RA, Endo T, Massagué J. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J Biol Chem 1987; 262 (14) 6443-6446
  • 99 Chin BY, Mohsenin A, Li SX, Choi AM, Choi ME. Stimulation of pro-alpha(1)(I) collagen by TGF-beta(1) in mesangial cells: role of the p38 MAPK pathway. Am J Physiol Renal Physiol 2001; 280 (3) F495-F504
  • 100 Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab 2007; 92 (11) 4191-4198
  • 101 Ewens KG, Stewart DR, Ankener W , et al. Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab 2010; 95 (5) 2306-2315
  • 102 Neptune ER, Frischmeyer PA, Arking DE , et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 2003; 33 (3) 407-411
  • 103 Kaur S, Archer KJ, Devi MG, Kriplani A, Strauss III JF, Singh R. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis. J Clin Endocrinol Metab 2012; 97 (10) E2016-E2021
  • 104 Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome?. Hum Reprod Update 2005; 11 (4) 357-374
  • 105 Barnes RB, Rosenfield RL, Ehrmann DA , et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994; 79 (5) 1328-1333
  • 106 Hatzirodos N, Bayne RA, Irving-Rodgers HF , et al. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. FASEB J 2011; 25 (7) 2256-2265
  • 107 Xu N, Kwon S, Abbott DH , et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS ONE 2011; 6 (11) e27286
  • 108 Raja-Khan N, Urbanek M, Rodgers RJ, Legro RS. The role of TGF-β in polycystic ovary syndrome. Reprod Sci 2014; 21 (1) 20-31
  • 109 Laviades C, Varo N, Díez J. Transforming growth factor beta in hypertensives with cardiorenal damage. Hypertension 2000; 36 (4) 517-522
  • 110 Romano M, Guagnano MT, Pacini G , et al. Association of inflammation markers with impaired insulin sensitivity and coagulative activation in obese healthy women. J Clin Endocrinol Metab 2003; 88 (11) 5321-5326
  • 111 Pfeiffer A, Middelberg-Bisping K, Drewes C, Schatz H. Elevated plasma levels of transforming growth factor-beta 1 in NIDDM. Diabetes Care 1996; 19 (10) 1113-1117
  • 112 Wang XL, Liu SX, Wilcken DE. Circulating transforming growth factor beta 1 and coronary artery disease. Cardiovasc Res 1997; 34 (2) 404-410
  • 113 Coucke PJ, Willaert A, Wessels MW , et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 2006; 38 (4) 452-457
  • 114 Bobik A. Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 2006; 26 (8) 1712-1720
  • 115 Heldin CH. Platelet-derived growth factor—an introduction. Cytokine Growth Factor Rev 2004; 15 (4) 195-196
  • 116 Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79 (4) 1283-1316
  • 117 Heldin CH, Eriksson U, Ostman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys 2002; 398 (2) 284-290
  • 118 Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986; 46 (2) 155-169
  • 119 Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999; 126 (14) 3047-3055
  • 120 Scotti L, Abramovich D, Pascuali N , et al. Involvement of the ANGPTs/Tie-2 system in ovarian hyperstimulation syndrome (OHSS). Mol Cell Endocrinol 2013; 365 (2) 223-230
  • 121 Uutela M, Wirzenius M, Paavonen K , et al. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 2004; 104 (10) 3198-3204
  • 122 Hellström M, Gerhardt H, Kalén M , et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001; 153 (3) 543-553
  • 123 Klagsbrun M, Dluz S. Smooth muscle cell and endothelial cell growth factors. Trends Cardiovasc Med 1993; 3 (6) 213-217
  • 124 Fernig DG, Gallagher JT. Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res 1994; 5 (4) 353-377
  • 125 Presta M. Sex hormones modulate the synthesis of basic fibroblast growth factor in human endometrial adenocarcinoma cells: implications for the neovascularization of normal and neoplastic endometrium. J Cell Physiol 1988; 137 (3) 593-597
  • 126 Hammadeh ME, Fischer-Hammadeh C, Hoffmeister H , et al. Fibroblast growth factor (FGF), intracellular adhesion molecule (sICAM-1) level in serum and follicular fluid of infertile women with polycystic ovarian syndrome, endometriosis and tubal damage, and their effect on ICSI outcome. Am J Reprod Immunol 2003; 50 (2) 124-130
  • 127 Tan BK, Adya R, Chen J , et al. Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res 2009; 83 (3) 566-574
  • 128 Ersoy C, Kiyici S, Budak F , et al. The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res Clin Pract 2008; 81 (1) 56-60
  • 129 Di Pietro M, Parborell F, Irusta G , et al. Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology 2015; 156 (4) 1453-1463
  • 130 Moll E, van der Veen F, van Wely M. The role of metformin in polycystic ovary syndrome: a systematic review. Hum Reprod Update 2007; 13 (6) 527-537
  • 131 Flyckt RL, Goldberg JM. Laparoscopic ovarian drilling for clomiphene-resistant polycystic ovary syndrome. Semin Reprod Med 2011; 29 (2) 138-146
  • 132 El Behery MM, Diab AE, Mowafy H, Ebrahiem MA, Shehata AE. Effect of laparoscopic ovarian drilling on vascular endothelial growth factor and ovarian stromal blood flow using 3-dimensional power Doppler. Int J Gynaecol Obstet 2011; 112 (2) 119-121
  • 133 Duncan WC, Nio-Kobayashi J. Targeting angiogenesis in the pathological ovary. Reprod Fertil Dev 2013; 25 (2) 362-371
  • 134 Pau E, Alonso-Muriel I, Gómez R , et al. Plasma levels of soluble vascular endothelial growth factor receptor-1 may determine the onset of early and late ovarian hyperstimulation syndrome. Hum Reprod 2006; 21 (6) 1453-1460
  • 135 Pellicer A, Albert C, Mercader A, Bonilla-Musoles F, Remohí J, Simón C. The pathogenesis of ovarian hyperstimulation syndrome: in vivo studies investigating the role of interleukin-1beta, interleukin-6, and vascular endothelial growth factor. Fertil Steril 1999; 71 (3) 482-489
  • 136 Neulen J, Wenzel D, Hornig C , et al. Poor responder-high responder: the importance of soluble vascular endothelial growth factor receptor 1 in ovarian stimulation protocols. Hum Reprod 2001; 16 (4) 621-626
  • 137 McClure N, Healy DL, Rogers PA , et al. Vascular endothelial growth factor as capillary permeability agent in ovarian hyperstimulation syndrome. Lancet 1994; 344 (8917) 235-236
  • 138 Levin ER, Rosen GF, Cassidenti DL , et al. Role of vascular endothelial cell growth factor in Ovarian Hyperstimulation Syndrome. J Clin Invest 1998; 102 (11) 1978-1985
  • 139 Engin-Ustun Y, Yılmaz S, Timur H , et al. Comparison of bevacizumab and cabergoline in the treatment of ovarian hyperstimulation syndrome in a rat model. Gynecol Endocrinol 2013; 29 (9) 851-854
  • 140 Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update 2008; 14 (4) 367-378
  • 141 Battaglia C, Genazzani AD, Regnani G, Primavera MR, Petraglia F, Volpe A. Perifollicular Doppler flow and follicular fluid vascular endothelial growth factor concentrations in poor responders. Fertil Steril 2000; 74 (4) 809-812
  • 142 Klein NA, Battaglia DE, Woodruff TK , et al. Ovarian follicular concentrations of activin, follistatin, inhibin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-2 (IGFBP-2), IGFBP-3, and vascular endothelial growth factor in spontaneous menstrual cycles of normal women of advanced reproductive age. J Clin Endocrinol Metab 2000; 85 (12) 4520-4525
  • 143 Ocal P, Aydin S, Cepni I , et al. Follicular fluid concentrations of vascular endothelial growth factor, inhibin A and inhibin B in IVF cycles: are they markers for ovarian response and pregnancy outcome?. Eur J Obstet Gynecol Reprod Biol 2004; 115 (2) 194-199
  • 144 Friedman CI, Seifer DB, Kennard EA, Arbogast L, Alak B, Danforth DR. Elevated level of follicular fluid vascular endothelial growth factor is a marker of diminished pregnancy potential. Fertil Steril 1998; 70 (5) 836-839
  • 145 Ng EH, Chan CC, Yeung WS, Ho PC. Comparison of ovarian stromal blood flow between fertile women with normal ovaries and infertile women with polycystic ovary syndrome. Hum Rep 2005; 20 (7) 1881-1886