Synlett 2015; 26(17): 2447-2450
DOI: 10.1055/s-0035-1560263
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Oxazolidin-2-ones by Tandem Cyclization of Propargylic Alcohols and Phenyl Isocyanate Promoted by Silver Catalysts as π-Lewis Acids

Kohei Sekine
Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan   Email: yamada@chem.keio.ac.jp
,
Takanori Mawatari
Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan   Email: yamada@chem.keio.ac.jp
,
Tohru Yamada*
Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan   Email: yamada@chem.keio.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 06 July 2015

Accepted after revision: 08 August 2015

Publication Date:
09 September 2015 (online)


Abstract

Highly Z-selective syntheses of oxazolidin-2-ones from propargylic alcohols containing internal alkynes and phenyl isocyanate were achieved by using a combination of silver acetate and N,N-dimethylaminopyridine. The catalytic system was applied to propargylic alcohols containing alkyl-substituted alkyne groups. By considering the results in the presence and absence of an electron-withdrawing group on the aromatics, it was shown that the silver catalyst effectively activates the C≡C triple bond by acting as a π-Lewis acid to produce the corresponding oxazolidinones with high Z-selectivities.

Supporting Information

 
  • References and Notes

    • 1a Silver in Organic Chemistry . Harmata M. Wiley-VHC; Weinheim: 2010
    • 1b Weibel J.-M, Blanc A, Pale P. Chem. Rev. 2008; 108: 3149
    • 1c Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I. Chem. Rev. 2008; 108: 3174
    • 1d Naodovic M, Yamamoto H. Chem. Rev. 2008; 108: 3132
    • 1e Yamamoto Y. Chem. Rev. 2008; 108: 3199

      For selected examples, see:
    • 2a Sai M, Matsubara S. Org. Lett. 2011; 13: 4676
    • 2b Wang Y, Zhu L, Zhang Y, Hong R. Angew. Chem. Int. Ed. 2011; 50: 2787
    • 2c Zhang X, Zhou Y, Wang H, Guo D, Ye D, Xu Y, Jiang H, Liu H. Green Chem. 2011; 13: 397
    • 2d Wang Y, Zheng K, Hong R. J. Am. Chem. Soc. 2012; 134: 4096
    • 2e Chioua M, Soriano E, Infantes L, Jimeno ML, Marco-Contelles J, Samadi A. Eur. J. Org. Chem. 2013; 35
    • 2f Gao M, He C, Chen H, Bai R, Cheng B, Lei A. Angew. Chem. Int. Ed. 2013; 52: 6958
    • 2g Hu Y, Yi R, Wu F, Wan B. J. Org. Chem. 2013; 78: 7714
    • 2h Brioche J, Meyer C, Cossy J. Org. Lett. 2013; 15: 1626
    • 2i Liu J, Fang Z, Zhang Q, Liu Q, Bi X. Angew. Chem. Int. Ed. 2013; 52: 6953
    • 2j Liu J, Xie X, Liu Y. Chem. Commun. 2013; 49: 11794
    • 2k Verma KA. K, Choudhary D, Saunthwal RK, Rustagi V, Patel M, Tiwari R. J. Org. Chem. 2013; 78: 6657
    • 2l Wong VH. L, Hor TS. A, Hii KK. Chem. Commun. 2013; 49: 9272
    • 2m Breman AC, Ruiz-Olalla A, van Maarseveen JH, Ingemann S, Hiemstra H. Eur. J. Org. Chem. 2014; 7413
    • 2n Gronnier C, Faudot dit Bel P, Henrion G, Kramer S, Gagosz F. Org. Lett. 2014; 16: 2092
    • 2o Meng X, Liao P, Liu J, Bi X. Chem. Commun. 2014; 50: 11837
    • 2p Sheng J, Fan C, Ding Y, Fan X, Wu J. Chem. Commun. 2014; 50: 4188
    • 2q Yang L, Ma Y, Song F, You J. Chem. Commun. 2014; 50: 3024
    • 3a Yamada W, Sugawara Y, Cheng H.-M, Ikeno T, Yamada T. Eur. J. Org. Chem. 2007; 2604
    • 3b Yoshida S, Fukui K, Kikuchi S, Yamada T. Chem. Lett. 2009; 38: 786
    • 3c Yoshida S, Fukui K, Kikuchi S, Yamada T. J. Am. Chem. Soc. 2010; 132: 4072
    • 3d Kikuchi S, Yoshida S, Sugawara Y, Yamada W, Cheng H.-M, Fukui K, Sekine K, Iwakura I, Ikeno T, Yamada T. Bull. Chem. Soc. Jpn. 2011; 84: 698
    • 3e Kikuchi S, Sekine K, Ishida T, Yamada T. Angew. Chem. Int. Ed. 2012; 51: 6989
    • 3f Ishida T, Kikuchi S, Tsubo T, Yamada T. Org. Lett. 2013; 15: 848
    • 3g Ishida T, Kikuchi S, Yamada T. Org. Lett. 2013; 15: 3710
    • 3h Sekine K, Takayanagi A, Kikuchi S, Yamada T. Chem. Commun. 2013; 49: 11320
    • 3i Ishida T, Kobayashi R, Yamada T. Org. Lett. 2014; 16: 2430
    • 3j Ugajin R, Kikuchi S, Yamada T. Synlett 2014; 25: 1178
    • 4a Kimura M, Kure S, Yoshida Z, Tanaka S, Fugami K, Tamaru Y. Tetrahedron Lett. 1990; 31: 4887
    • 4b Tamaru Y, Kimura M, Tanaka S, Kure S, Yoshida Z. Bull. Chem. Soc. Jpn. 1994; 67: 2838
    • 4c Ritter S, Horino Y, Lex J, Schmalz H.-G. Synlett 2006; 3309
    • 4d Ramesh R, Chandrasekaran Y, Megha R, Chandrasekaran S. Tetrahedron 2007; 63: 9153
    • 5a Shachat N, Bagnell Jr. JJ. J. Org. Chem. 1963; 28: 991
    • 5b Stoffel PJ, Speziale AJ. J. Org. Chem. 1963; 28: 2814
    • 5c Ohe K, Ishihara T, Chatani N, Kawasaki Y, Murai S. J. Org. Chem. 1991; 56: 2267
    • 5d Kim WS, Yoon EY, Jo KA, Kang EJ. Bull. Korean Chem. Soc. 2011; 32: 3158
    • 5e Jo KA, Maheswara M, Yoon E, Lee YY, Yun H, Kang EJ. J. Org. Chem. 2012; 77: 2924
    • 5f Alamsetti SK, Persson AK, Jiang T, Bäckvall JE. Angew. Chem. Int. Ed. 2013; 52: 13745
    • 5g Li DY, Chen HJ, Liu PN. Adv. Synth. Catal. 2015; 357: 1193
  • 6 (4Z)-4-Benzylidene-5,5-dimethyl-3-phenyl-1,3-oxazolidin-2-one; Typical Procedure A mixture of AgOAc (6.7 mg, 10 mol%) and DMAP (14.7 mg, 30 mol%) in 1,2-Cl2C6H4 (0.5 mL) was stirred for 15 min under N2, A solution of the propargylic alcohol 1a (64.1 mg, 0.4 mmol) in 1,2-Cl2C6H4 (0.75 mL) was added, followed by a solution of PhNCO (65 μL, 1.5 equiv) in 1,2-Cl2C6H4 (0.75 mL), and the mixture was stirred at 40 °C for 9 h. The reaction was quenched with H2O, and the mixture was extracted with EtOAc (3 ×). The organic layers were combined, washed with brine, and dried (Na2SO4). The E/Z ratio was measured by GC analysis of the crude mixture. The solvent was then removed under reduced pressure, and the residue was purified by column chromatography (silica gel, hexane–EtOAc) to give oxazolidinone 3a as colorless solid; yield: 105.4 mg (94%); 1H NMR (400 MHz, CDCl3): δ = 1.73 (s, 6 H), 5.63 (s, 1 H), 6.66 (d, J = 7.3 Hz, 2 H), 6.82–6.92 (m, 3 H), 6.98–7.06 (m, 5 H).
  • 7 It is also possible that isomerization of the vinylsilver intermediate produced the (E)-oxazolidinone, but the detail remains unclear.