Synlett 2016; 27(06): 905-911
DOI: 10.1055/s-0035-1561269
letter
© Georg Thieme Verlag Stuttgart · New York

A Modular Approach to Functionalised Dyes

Omer K. Rasheed
a  School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK   Email: peter.quayle@manchestr.ac.uk
,
Amy Lawrence
a  School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK   Email: peter.quayle@manchestr.ac.uk
,
Peter Quayle*
a  School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK   Email: peter.quayle@manchestr.ac.uk
,
Patrick D. Bailey
b  Department of Chemical and Petroleum Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK
› Author Affiliations
Further Information

Publication History

Received: 02 October 2015

Accepted after revision: 01 November 2015

Publication Date:
23 December 2015 (online)


Abstract

A modular approach to the synthesis of sensors is described. In this approach a central dye scaffold, prepared from the SNAr reaction between a halo-substituted azo-dye and a disubstituted phenol, was decorated with a representative carbohydrate or macrocycle using Sharpless click chemistry. Regiochemical issues in the click reaction are also addressed.

Supporting Information

 
  • References and Notes

    • 1a Mitra J, Guerrero EN, Hedge PM, Wang H, Boldogh I, Rao KS, Mitra S, Hegde ML. Biomolecules 2014; 4: 678
    • 1b Wang Z.-M, Xie S.-S, Li X.-M, Wu J.-J, Wang X.-B, Kong L.-Y. RSC Adv. 2015; 5: 70395
    • 1c Robert A, Liu Y, Nguyen M, Meunier B. Acc. Chem. Res. 2015; 48: 1332
    • 1d Qian X, Xu Z. Chem. Soc. Rev. 2015; 44: 4487
    • 1e Shen C, New EJ. Metallomics 2015; 7: 56
    • 1f Bourassa MW, Miller L. Metallomics 2012; 4: 721
    • 1g Jurowski K, Buszewski B, Piekoszewski W. Crit. Rev. Anal. Chem. 2015; 45: 334
    • 1h Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN. Chem. Rev. 2014; 114: 8499
    • 2a Lawrence A. PhD Thesis. University of Manchester; UK: 2011
    • 2b Rasheed OK, Bailey PD, Lawrence A, Quayle P, Raftery J. Eur. J. Org. Chem. 2015; 6988
    • 3a For a review, see: Yeung MC.-L, Yam VW.-W. Chem. Soc. Rev. 2015; 44: 4192

    • Exemplification:
    • 3b Knight AS, Zhou EY, Francis MB. Chem. Sci. 2015; 6: 4042
    • 4a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 4b Liang L, Astruc D. Coord. Chem. Rev. 2011; 255: 2933
    • 4c Hassan S, Müller TJ. Adv. Synth. Catal. 2015; 357: 617
  • 5 For an exemplification of this basic design concept, see: Chandrasekeran V, Lindhorst TK. Chem. Commun. 2012; 48: 7519
    • 6a Lu H, Qi S, Mack J, Li Z, Lei J, Kobayashi N, Shen Z. J. Mater. Chem. 2011; 21: 10878
    • 6b Zhang Y, Zimmerman SC. Beilstein J. Org. Chem. 2012; 8: 486
    • 6c Ast S, Schwarze T, Müller H, Sukhanov A, Michaelis S, Wegener J, Wolfbeis OS, Körzdörfer T, Dürkop A, Holdt H.-J. Chem. Eur. J. 2013; 19: 14911
    • 7a Sharpless KB, Menetsch R. Expert Opin. Drug Discovery 2006; 1: 525
    • 7b Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Med. Res. Rev. 2008; 28: 278
    • 7c Ma N, Wang Y, Zhao B.-X, Ye W.-C, Jiang S. Drug Des., Dev. Ther. 2015; 9: 1585
    • 8a Hong V, Presolski SI, Ma C, Finn MG. Angew. Chem. Int. Ed. 2009; 48: 9879
    • 8b Velázquez HD, Garcia YR, Vandichel M, Madder A, Verpoort F. Org. Biomol. Chem. 2014; 12: 9350

    • For recent applications, see:
    • 8c Boutureira O, Bernades GJ. L. Chem. Rev. 2015; 115: 2174
    • 9a For a conspectus, see: Espeel P, Du Prez FE. Macomolecules 2015; 48: 2
    • 9b Li Z, Zeng Q, Yu G, Li Y, Qin J. Macromol. Rapid Commun. 2008; 29: 136
    • 9c Malkoch M, Thibault RJ, Drockenmuller E, Messerschmidt M, Voit B, Rusell TP, Hawker CJ. J. Am. Chem. Soc. 2005; 127: 14942
    • 9d Xi W, Scott TF, Kloxin CJ, Bowman CN. Adv. Funct. Mater. 2014; 24: 2572
    • 9e Qin A, Liu Y, Tang BZ. Macromol. Chem. Phys. 2015; 216: 818
    • 10a For application of click chemistry to the synthesis of azobenzene glycoconjugates, see: Hu Y, Tabor RF, Wilkinson BL. Org. Biomol. Chem. 2015; 13: 2216

    • Azo-dyes:
    • 10b Chevalier A, Renard P.-Y, Romieu A. Tetrahedron Lett. 2014; 55: 6759

    • Glycosylation of cyanine dyes:
    • 10c Zhang X.-T, Gu Z.-Y, Liu L, Wang S, Xing G.-W. Chem. Commun. 2015; 51: 8606

    • For click chemistry on carbohydrate scaffolds, see:
    • 10d Aragão-Leoneti V, Campo VL, Gomes AS, Field RA, Carvalho I. Tetrahedron 2010; 66: 9475
    • 10e Kashmery HA, Thompson DG, Dondi R, Mabbott S, Graham D, Clark AW, Burley GA. Chem. Commun. 2015; 51: 13028

    • Click reactions in ligand assembly:
    • 10f Chhatra RK, Kumar A, Pandey PS. J. Org. Chem. 2011; 76: 9086
    • 10g Noor A, Lewis JE. M, Cameron SA, Moratti SC, Crowley JD. Supramolecular Chemistry 2012; 24: 492
    • 10h Tropiano M, Kenwright AM, Faulkner S. Chem. Eur. J. 2015; 21: 5697
    • 11a Merino E. Chem. Soc. Rev. 2011; 40: 3835
    • 11b Griess P. J. Chem. Soc. 1865; 18: 268
    • 11c Griefs P. Justus Liebigs Ann. Chem. 1860; 113: 201
  • 12 Synthesis of Scaffold 3 (E)-1-(4-Bromophenyl)-2-(2-methoxy-1-naphthyl)diazene (1 equiv, 0. 340 g), CuI (30 mol%, 57 mg) or IPrCuCl (5 mol%, 24 mg), picolinic acid (40 mol%, 50 mg), potassium phosphate tri­basic (20 mmol, 424 mg), 3,5-bis(hydroxy methyl)phenol (1.2 equiv, 185 mg) were dissolved in dry DMSO in a Schlenk tube under nitrogen (2 mL/equiv of substrate). The reaction mixture was heated for 48 h at 130 °C. The reaction mixture was allowed to cool and then added EtOAc in it. The organic layer was separated, and the aqueous layer was re-extracted with EtOAc. The combined organic layer was dried over MgSO4 and reduced in vacuo. The crude product was purified by column chromatography (hexane–EtOAc, 1:4) affording the title compound as a colourless oil, yield 58% (see SI for spectroscopic data).
    • 13a Haberhauer G, Kallweit C, Woelper C, Bläser D. Angew. Chem. Int. Ed. 2013; 52: 7879
    • 13b Fryszkowska A, Tilford RW, Guo F, Kaszynski P. Tetrahedron 2005; 61: 2327
    • 13c Luboch E, Biedrzycka A. Pol. J. Chem. 2003; 77: 47
    • 13d Price R, Yates JE. J. Chem. Soc., Perkin Trans. 1 1982; 1775
    • 13e Roling PV. J. Org. Chem. 1975; 40: 2421
    • 13f Stepanov BI, Salivon MA, Lagidze VF, Dedyukhina LA. Zh. Obs. Khim. 1958; 28: 1915
    • 14a Pisinos EM, Vidali VP, Couladouros EA. Eur. J. Org. Chem. 2011; 1207
    • 14b Frlan R, Kikelj D. Synthesis 2006; 2271
    • 14c Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 15a For [(IPr)CuCl], see: Kaur H, Zinn FK, Stevens ED, Nolan SP. Organometallics 2004; 23: 1157
    • 15b Santoro O, Collado A, Slawin AM. Z, Nolan SP, Cazin CS. J. Chem. Commun. 2013; 49: 10483
    • 15c Use of Cu(I) carbene complexes in Ullmann reactions: Ellul CE, Reed G, Mahon MF, Pascu SI, Whittlesey MK. Organometallics 2010; 29: 4097
    • 15d Use of Cu(II) carbene complexes in Ullmann reactions: Lake BR. M, Williams CE. Organometallics 2014; 33: 2027
    • 16a Maiti D, Buchwald SL. J. Org. Chem. 2010; 75: 1791
    • 16b Fagan PJ, Hauptman E, Shapiro R, Casalnuovo A. J. Am. Chem. Soc. 2000; 122: 5043
    • 16c Otto N, Opatz T. Beilstein J. Org. Chem. 2012; 8: 1105
    • 16d Maiti D. Chem. Commun. 2011; 47: 8340
  • 17 Synthesis of Macrocycles 12 and 13 To the stirred solution of N,N′-[(2S,2′S)-{[pyridine-2,6-diylbis(methylene)]bis(sulfanediyl)}bis(propane-2,1-diyl)]bis(4-methylbenzenesulfonamide) (1.448 g, 2.44 mmol) in dry DMF (700 mL). 1,3-Bis(bromomethyl)-5-(prop-2-yn-1-yloxy)benzene (779.7 mg, 2.45 mmol) and Cs2CO3 (3.92 g, 12.0 mmol) or KOH (5 equiv) or K2CO3 (5 equiv) were added. The reaction mixture was stirred for 2 d at r.t., and then the solvent was removed in vacuo and azeotroped to dryness using toluene. Column chromatography (EtOAc–PE, 4:6) of the residue afforded the title compound (64%, mp 95–97 °C) as a colorless foam (see SI for spectroscopic data).
  • 18 Compare: Vriesema BK, Buter J, Kellog RM. J. Org. Chem. 1984; 49: 110
  • 19 Mereyala HB, Gurrala SR. Carbohydr. Res. 1998; 307: 351
  • 20 Thompson AS, Humphrey GR, DeMarco AM, Mathre DJ, Grabowski EJ. J. J. Org. Chem. 1993; 58: 5886
  • 21 Click Chemistry The reaction mixture containing 17 or 18 (1 mmol) propargyl sugar or macromolecule (2 mmol), CuSO4·5H2O (52 mg, 10 mol%), sodium ascorbate (20 mol%) in dioxane (15 mL)–H2O (3 mL) was heated for 24 h at 50 °C, than extracted with EtOAc. After that organic layer was washed with 1 M HCl (3 × 50 mL), than with 1 M NH4OH (3 × 50 mL) and with H2O. The organic layer was dried over MgSO4 and reduced in vacuo. Crude was purified by flash chromatography with hexane and EtOAc (1:9; see SI for spectroscopic data).
  • 22 Bock VD, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
  • 23 Zhang L, Chen X, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127: 15998
  • 24 Ast S, Kuke S, Rutledge PJ, Todd MH. Eur. J. Inorg. Chem. 2015; 58