Synlett 2016; 27(06): 859-863
DOI: 10.1055/s-0035-1561271
letter
© Georg Thieme Verlag Stuttgart · New York

Initial Synthesis of Valoneic and Woodfordinic Acid Dilactones

Hitoshi Abe*
Graduate School of Science and Engineering, University of Toyama, 930-8555, Japan   Email: abeh@eng.u-toyama.ac.jp
,
Shingo Ishikura
Graduate School of Science and Engineering, University of Toyama, 930-8555, Japan   Email: abeh@eng.u-toyama.ac.jp
,
Yoshikazu Horino
Graduate School of Science and Engineering, University of Toyama, 930-8555, Japan   Email: abeh@eng.u-toyama.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 14 September 2015

Accepted after revision: 01 November 2015

Publication Date:
23 December 2015 (online)


Abstract

The naturally occurring polyphenolic compounds, valoneic and woodfordinic acid dilactones, were synthesized through the classical Ullmann coupling reaction as the key step. To prepare the diaryl ether component, the Ullmann condensation method was applied using the corresponding phenol and arylbromide.

Supporting Information

 
  • References and Notes

  • 1 For a review on polyphenolic compounds, see: Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Angew. Chem. Int. Ed. 2011; 50: 586
    • 2a Vattem DA, Shetty K. J. Food. Biochem. 2005; 29: 234
    • 2b Ochir S, Nishizawa M, Park BJ, Ishii K, Kanazawa T, Funaki M, Yamagishi T. J. Nat. Med. 2010; 64: 275
    • 2c Hosoyama H, Sugimoto A, Suzuki Y, Sakane I, Kakuda T. Yakugaku Zasshi 2003; 123: 599
    • 3a Atta-Ur-Rahman; Ngounou FN, Choudhary MI, Malik S, Makhmoor T, Nur-E-Alam M, Zareen S, Lontsi D, Ayafor JF, Sondengam BL. Planta Med. 2001; 67: 335
    • 3b Bagchi D, Hassoun EA, Bagchi M, Stohs S. J. Free Radicals Biol. Med. 1993; 15: 217
    • 4a Narayanan BA, Geoffroy O, Willingham MC, Re GG, Nixon DW. Cancer Lett. 1999; 136: 215
    • 4b Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, Heber D. J. Nutr. Biochem. 2005; 16: 360
    • 4c Choi YH, Pezzuto JM, Kinghorn AD, Farnsworth NR. Planta Med. 1988; 54: 511
    • 4d Constantinou A, Stoner GD, Mehta R, Rao K, Runyan C, Moon R. Nutr. Cancer 1995; 23: 121
  • 5 Cheng X.-F, Meng Z.-M, Chen Z.-L. Phytochemistry 1998; 49: 2193
    • 6a Sasov SA, Petrova MF, Yartseva IV. Khim. Prir. Soedin. 1986; 106
    • 6b Sasov SA, Tolkachev VN, Yartseva IV, Tolkachev ON. Vopr. Biol. Med. Farm. Khim. 2010; 24
    • 7a Wyrepkowski CC, da Costa DL. M. G, Sinhorin AP, Vilegas W, De Grandis RA, Resende FA, Varanda EA, dos Santos LC. Molecules 2014; 19: 16039
    • 7b Unno T, Sugimoto A, Kakuda T. J. Ethnopharm. 2004; 93: 391
    • 7c Marzouk MS. A. Phytochem. Anal. 2008; 19: 541
    • 7d Gođevac D, Tešević V, Vajs V, Milosavljević S, Stanković M. Food Chem. Toxicol. 2009; 47: 2853
    • 7e de la Rosa LA, Alvarez-Parrilla E, Shahidi F. J. Agric. Food Chem. 2011; 59: 152
    • 7f Mämmelä P, Savolainen H, Lindroos L, Kangas J, Vartiainen T. J. Chromatogr. A 2000; 891: 75
    • 7g Hirano Y, Kondo R, Sakai K. J. Wood Sci. 2003; 49: 339
    • 7h Fernandes A, Fernandes I, Cruz L, Mateus N, Cabral M, de Freitas V. J. Agric. Food Chem. 2009; 57: 11154
    • 7i Fernandes A, Sousa A, Mateus N, Cabral M, de Freitas V. Food Chem. 2011; 125: 1398
    • 7j Fischer UA, Carle R, Kammerer DR. Food Chem. 2011; 127: 807
    • 7k Kiss AK, Granica S, Stolarczyk M, Melzig MF. Food Chem. 2012; 131: 1015
    • 7l Garcia R, Soares B, Dias CB, Freitas AM. C, Cabrita M. J. Eur. Food Res. Technol. 2012; 235: 457
    • 7m Cantos E, Espín JC, López-Bote C, de la Hoz L, Ordóñez JA, Tomás-Barberán FA. J. Agric. Food Chem. 2003; 51: 6248
    • 7n Yoshida T, Tanei S, Liu Y.-Z, Yuan K, Ji C.-R, Okuda T. Phytochemistry 1993; 32: 1287
    • 7o Barakat HH, Hussein SA. M, Marzouk MS, Merfort I, Linscheid M, Nawwar MA. M. Phytochemistry 1997; 46: 935
    • 7p Boulekbache-Makhlouf L, Meudec E, Chibane M, Mazauric J.-P, Slimani S, Henry M, Cheynier V, Madani K. J. Agric. Food Chem. 2010; 58: 12615
    • 7q Wu S.-B, Dastmalchi K, Long C, Kennelly EJ. J. Agric. Food Chem. 2012; 60: 7513
    • 7r Boulekbache-Makhlouf L, Meudec E, Mazauric J.-P, Madani K, Cheynier V. Phytochem. Anal. 2013; 24: 162
    • 7s Omar R, Li L, Yuan T, Seeram NP. J. Nat. Prod. 2012; 75: 1505
    • 7t Yoshida T, Jin Z.-X, Okuda T. Phytochemistry 1991; 30: 2747
    • 7u Yoshida T, Nakazawa T, Hatano T, Yang R.-C, Yang L.-L, Yen K.-Y, Okuda T. Phytochemistry 1994; 37: 241
    • 7v Scumidt OT, Komarek E. Justus Liebigs Ann. Chem. 1955; 156
  • 9 For an example, see: Alam A, Tsuboi S. Tetrahedron 2007; 63: 10454

    • For reviews, see:
    • 10a Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 10b Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
  • 11 Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400 ; and references cited therein

    • We already reported several syntheses of the related compounds, see:
    • 12a Abe H, Sahara Y, Matsuzaki Y, Takeuchi Y, Harayama T. Tetrahedron Lett. 2008; 49: 605
    • 12b Shioe K, Sahara Y, Horino Y, Harayama T, Takeuchi Y, Abe H. Tetrahedron 2011; 67: 1960
    • 12c Shioe K, Ishikura S, Horino Y, Abe H. Chem. Pharm. Bull. 2013; 61: 1308
  • 13 Ohzeki T, Mori K. Biosci. Biotechnol. Biochem. 2003; 67: 2584
  • 14 Alam A, Takaguchi Y, Ito H, Yoshida T, Tsuboi S. Tetrahedron 2005; 61: 1909
  • 15 Woodfordinic Acid Dilactone (2)Under H2 atmosphere, a mixture of 11 (150 mg, 95 μmol), MeOH (5 mL), EtOAc (5 mL), and Pd/C (10 wt%, 15 mg) was stirred for 15 h at r.t. After filtration with Celite, the filtrate was evaporated. Gray solid of 2 (60.7 mg, 100%) was obtained; mp >300 °C [lit.6a decomp. 300 °C]. IR (KBr): 3320, 1719, 1617, 1351, 1049 cm–1. 1H NMR (500 MHz, MeOH-d 4): δ = 7.13 (2 H, s, ArH), 7.18 (2 H, s, ArH). 13C NMR (125 MHz, DMSO-d 6): δ = 106.5, 108.2, 109.0, 113.5, 114.7, 135.2, 136.4, 138.9, 139.4, 141.4, 142.8, 149.8, 165.9.
  • 16 Tian H, Vogel R, Amici L, Tamagnan G, Baldwin RM. J. Labelled Compd. Radiopharm. 2006; 49: 1247
  • 17 Su X, Surry DS, Spandl RJ, Spring DR. Org. Lett. 2008; 10: 2593
  • 18 Valoneic Acid Dilactone (3)Valoneic acid dilactone (3) was obtained by the method similar to the protocol for 2 in 80% yield, mp >300 °C. IR (KBr): 3019 (br), 1710, 1610, 1340, 1187, 1107, 1044 cm–1. 1H NMR (500 MHz, MeOH-d 4): δ = 6.75 (1 H, s, ArH), 7.09 (1 H, s, ArH), 7.11 (1 H, s, ArH). 13C NMR (125 MHz, MeOH-d 4): δ = 108.8, 110.3, 111.0, 115.5, 119.7, 121.6, 122.6, 123.0, 138.1, 138.4, 139.1, 140.7, 140.9, 143.6, 144.5, 144.9, 145.3, 147.1, 168.9, 171.0, 171.2.