Synlett 2017; 28(08): 962-965
DOI: 10.1055/s-0036-1588400
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Promoted Intramolecular Aminotrifluoromethylation of Alkenes with Langlois Reagent as the Trifluoromethyl Source

Hong-Yu Zhang
School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, P. R. of China   Email: 13820681390@163.com
,
Wenge Huo
School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, P. R. of China   Email: 13820681390@163.com
,
Chao Ge
School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, P. R. of China   Email: 13820681390@163.com
,
Jiquan Zhao
School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, P. R. of China   Email: 13820681390@163.com
,
Yuecheng Zhang*
School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, P. R. of China   Email: 13820681390@163.com
› Author Affiliations
Further Information

Publication History

Received: 13 October 2016

Accepted after revision: 31 December 2016

Publication Date:
06 February 2017 (online)


Abstract

A novel approach for copper-promoted intramolecular aminotrifluoromethylation of alkenes using inexpensive CF3SO2Na as the trifluoromethyl source is described. The feature of this method is the concurrent construction of a five-membered ring and a C–CF3 bond in the simple copper salt/TBHP system. A gram-scale reaction was tested with a slight decrease in the yield. This protocol provides an operationally simple, step-economical and synthetically useful access to a variety of trifluoromethyl indolines, pyrrolidines and lactams.

Supporting Information

 
  • References and Notes

    • 1a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 1b Muller TE, Beller M. Chem. Rev. 1998; 98: 675
    • 1c Hennessy ET, Betley TA. Science 2013; 340: 591
    • 2a Banks RE, Smart BE, Tatlow JC. Organofluorine Chemistry: Principles and Commercial Applications . Plenum; New York: 1994
    • 2b Prakash SG. K, Yudin AK. Chem. Rev. 1997; 97: 757
    • 2c Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 2d Wang J, Sanchez-Rosello M, Acena JL, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 3a Shimizu R, Egami H, Nagi T, Chae J, Hamashima Y, Sodeoka M. Tetrahedron Lett. 2010; 51: 5947
    • 3b Wang X, Truesdale L, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3648
    • 3c Weng Z, Lee R, Jia W, Yuan Y, Wang W, Feng X, Huang K.-W. Organometallics 2011; 30: 3229
    • 3d Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 3e Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683

      For reviews of the difunctionalization of alkenes, see:
    • 4a McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 4b Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412
    • 4c Chemler SR. Org. Biomol. Chem. 2009; 7: 3009
    • 4d Minatti A, Muñiz K. Chem. Soc. Rev. 2007; 36: 1142

    • For selected recent examples of difunctionalization, see:
    • 4e Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2012; 51: 1926
    • 4f Turnpenny BW, Chemler SR. Chem. Sci. 2014; 5: 1786
    • 4g Hopkins BA, Wolfe JP. Chem. Sci. 2014; 5: 4840
    • 4h Dang L, Liang L, Qian C, Fu M, Ma T, Xu D, Jiang H, Zeng W. J. Org. Chem. 2014; 79: 769
    • 4i Davis TA, Hyster TK, Rovis T. Angew. Chem. Int. Ed. 2013; 52: 14181
    • 4j Zhang H, Pu W, Xiong T, Li Y, Zhou X, Sun K, Liu Q, Zhang Q. Angew. Chem. Int. Ed. 2013; 52: 2529
    • 4k Huang X, Liu D, Li L, Cai Y, Liu W, Shi Y. J. Am. Chem. Soc. 2013; 135: 8101

      For selected recent examples of carbotrifluoromethylation, see:
    • 5a Mu X, Wu T, Wang H.-Y, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 5b Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000
    • 5c Gao P, Yan X.-B, Tao T, Yang F, He T, Song X.-R, Liu X.-Y, Liang Y.-M. Chem. Eur. J. 2013; 19: 14420
    • 5d Egami H, Shimizu R, Usui Y, Sodeoka M. Chem. Commun. 2013; 49: 7346
    • 5e Yang F, Klumphu P, Liang Y.-M, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 5f Liu X, Xiong F, Huang X, Xu L, Li P, Wu X. Angew. Chem. Int. Ed. 2013; 52: 6962
    • 5g Egami H, Shimizu R, Sodeoka M. J. Fluorine Chem. 2013; 152: 51
    • 5h Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 5i Chen Z.-M, Bai W, Wang S.-H, Yang B.-M, Tu Y.-Q, Zhang F.-M. Angew. Chem. Int. Ed. 2013; 52: 9781
    • 5j Wang F, Wang D, Mu X, Chen PH, Liu G. J. Am. Chem. Soc. 2014; 136: 10202
    • 5k Yang B, Xu X.-H, Qing F.-L. Org. Lett. 2015; 17: 1906

      For selected recent examples of oxytrifluoromethylation, see:
    • 6a Uneyama K. Tetrahedron 1991; 47: 555
    • 6b Zhang C.-P, Wang Z.-L, Chen Q.-Y, Zhang C.-T, Gu Y.-C, Xiao J.-C. Chem. Commun. 2011; 47: 6632
    • 6c Egami H, Shimizu R, Sodeoka M. Tetrahedron Lett. 2012; 53: 5503
    • 6d Janson PG, Ghoneim I, Ilchenko NO, Szabó KJ. Org. Lett. 2012; 14: 2882
    • 6e Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
    • 6f He Y.-T, Li L.-H, Yang Y.-F, Wang Y.-Q, Luo J.-Y, Liu X.-Y, Liang Y.-M. Chem. Commun. 2013; 49: 5687
    • 6g Jiang X.-Y, Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 14177
    • 6h Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 6i Lu D.-F, Zhu C.-L, Xu H. Chem. Sci. 2013; 4: 2478
    • 6j Egami H, Usui Y, Kawamura S, Nagashima S, Sodeoka M. Chem. Asian J. 2015; 10: 2190

      For selected recent examples of aminotrifluoromethylation, see:
    • 7a Kim E, Choi S, Kim H, Cho EJ. Chem.-Eur. J. 2013; 19: 6209
    • 7b Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136
    • 7c Wang F, Qi X, Liang Z, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
    • 7d Wang Y, Jiang M, Liu J.-T. Adv. Synth. Catal. 2016; 358: 1322
    • 7e He Y.-T, Wang Q, Zhao J, Liu X.-Y, Xua P.-F, Liang Y.-M. Chem. Commun. 2015; 51: 13209
    • 7f Zheng J, Deng Z, Zhang Y, Cui S. Adv. Synth. Catal. 2016; 358: 746
    • 8a Egami H, Kawamura S, Miyazaki A, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 7841
    • 8b Kawamura S, Egami H, Sodeoka M. J. Am. Chem. Soc. 2015; 137: 4865
  • 9 Lin J.-S, Xiong Y.-P, Ma C.-L, Zhao L.-J, Tan B, Liu X.-Y. Chem. Eur. J. 2014; 20: 1332
  • 10 Shen K, Wang Q. Org. Chem. Front. 2016; 3: 222
  • 11 Lin J.-S, Liu X.-G, Zhu X.-L, Tan B, Liu X.-Y. J. Org. Chem. 2014; 79: 7084
    • 12a Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
    • 12b Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1992; 33: 1291
    • 12c Langlois BR, Montkgre D, Roidot N. J. Fluorine Chem. 1994; 68: 63
    • 12d Billard T, Roques N, Langlois BR. J. Org. Chem. 1999; 64: 3813
    • 13a Ji Y, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
    • 13b Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herlé B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature (London) 2012; 492: 95
    • 13c Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
    • 13d Jiang X.-Y, Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 14177
    • 13e Luo H.-Q, Zhang Z.-P, Dong W, Luo X.-Z. Synlett 2014; 25: 1307
    • 13f Lu QQ, Liu C, Huang ZY, Ma YY, Zhang J, Lei AW. Chem. Commun. 2014; 50: 14101
    • 13g Lu QQ, Liu C, Peng P, Liu ZL, Fu LJ, Huang JG, Lei AW. Asian J. Org. Chem. 2014; 3: 273
    • 13h Yang Y, Liu Y, Jiang Y, Zhang Y, Vicic DA. J. Org. Chem. 2015; 80: 6639
    • 13i Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2014; 53: 11960
    • 13j Maji A, Hazra A, Maiti D. Org. Lett. 2014; 16: 4524
    • 13k Yang B, Xu X.-H, Qing F.-L. Org. Lett. 2015; 17: 1906
  • 14 Zhang H.-Y, Mao L.-L, Yang B, Yang S.-D. Chem. Commun. 2015; 51: 4101
  • 15 General Procedures for the Copper-Promoted Intramolecular Aminotrifluoromethylation of Alkenes: To a Schlenk tube were added 1a (0.2 mmol), CF3SO2Na (0.4 mmol), Cu(TFA)2·xH2O (0.2 mmol) and charged with argon three times. Anhydrous MeCN (1.5 mL) and TBHP (0.6 mmol) were added via a syringe and the mixture was stirred at 60 °C under Ar. When the substrate was consumed (monitored by TLC), the reaction mixture was cooled to r.t. The solvent was removed by rotary evaporation and the resulting residue was purified by column chromatography on silica gel to afford the product 2a in 73% yield. Characterization of Typical Products: 2e: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.42–7.45 (m, 1 H), 7.22–7.25 (m, 2 H), 7.09–7.13 (m, 1 H), 4.59–4.66 (m, 1 H), 3.60–3.67 (m, 2 H), 3.50–3.56 (m, 1 H), 3.13–3.17 (m, 2 H), 3.04–3.09 (m, 1 H), 2.85–2.92 (m, 1 H), 2.41–2.55 (m, 1 H), 2.24–2.30 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 140.32, 129.61, 128.48, 125.72, 124.96, 115.40, 125.36 (q, J = 256.1 Hz), 57.33 (d, J = 4.0 Hz), 46.82, 42.64, 40.78 (q, J = 27.3 Hz), 34.34, 26.18. 19F NMR (376 MHz, CDCl3): δ = –62.90 (s, 3 F). HRMS (ESI): m/z [M + NH4]+ calcd for C13H19ClF3N2O2S: 359.0808; found: 359.0802. 2l: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.62–7.65 (m, 1 H), 7.53 (d, J = 8.3 Hz, 2 H), 7.21 (d, J = 8.1 Hz, 2 H), 6.92–6.97 (m, 1 H), 6.75–6.78 (m, 1 H), 4.42–4.48 (m, 1 H), 2.83–2.94 (m, 2 H), 2.70–2.75 (m, 1 H), 2.40–2.49 (m, 1 H), 2.38 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 160.55 (d, J = 245.1 Hz), 144.57, 136.79 (d, J = 2.1 Hz), 133.84, 132.95 (d, J = 8.8 Hz), 129.84, 127.17, 125.53 (q, 278.8 Hz), 118.57 (d, J = 8.8 Hz), 114.83 (d, J = 23.6 Hz), 112.42 (d, J = 24.3 Hz), 57.29 (q, J = 3.1 Hz), 40.46 (q, J = 27.0 Hz), 34.09, 21.54. 19F NMR (376 MHz, CDCl3): δ = –63.09 (s, 3 F), –117.49 (s, 1 F). HRMS (ESI): m/z [M + NH4]+ calcd for C17H19F4N2O2S: 391.1103; found: 391.1098. 2o: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.19–7.39 (m, 10 H), 4.24 (d, J = 11.2 Hz, 1 H), 4.13–4.16 (m, 1 H), 3.98–4.05 (m, 1 H), 3.33–3.38 (m, 1 H), 3.01–3.15 (m, 1 H), 2.39–2.44 (m, 1 H), 2.22 (s, 3 H), 2.04–2.17 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 144.48, 143.81, 129.13, 128.85, 127.38, 126.99, 126.76, 126.40, 125.72 (q, J = 278.4 Hz), 59.29, 54.28, 53.37, 43.25, 40.45 (q, J = 26.26 Hz), 35.06. 19F NMR (376 MHz, CDCl3): δ = –63.43 (s, 3 F). HRMS (ESI): m/z [M + NH4]+ calcd for C19H24F3N2O2S: 401.1511; found: 401.1505. 2q: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.21–7.45 (m, 10 H), 4.46–4.53 (m, 1 H), 3.86 (s, 3 H), 3.07 (dd, J = 12.7, 4.6 Hz, 1 H), 2.76–2.90 (m, 1 H), 2.65–2.71 (m, 1 H), 2.37–2.51 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 158.96, 142.20, 141.21, 128.77, 128.13, 128.07, 127.62, 127.59, 127.13, 125.10 (q, J = 278.0 Hz), 73.87 (d, J = 3.0 Hz), 62.74, 57.41, 45.44, 38.84 (q, J = 28.3 Hz). 19F NMR (376 MHz, CDCl3): δ = –63.70 (s, 3 F). HRMS (ESI): m/z [M + H]+ calcd for C19H19F3NO2: 350.1368; found: 350.1362. 2r: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.24–7.40 (m, 10 H), 4.56–4.63 (m, 1 H), 3.19 (dd, J = 13.1, 3.2 Hz, 1 H), 2.65–2.78 (m, 2 H), 2.39–2.52 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 176.01, 141.33, 138.94, 129.15, 128.56, 128.06, 127.58, 127.52, 127.21, 125.02 (q, J = 278.3 Hz), 70.47 (d, J = 3.0 Hz), 57.52, 43.44, 39.17 (q, J = 29.3 Hz). 19F NMR (376 MHz, CDCl3): δ = –63.76 (s, 3 F). HRMS (ESI): m/z [M + NH4]+ calcd for C18H19F3NO2: 338.1368; found: 338.1362.
    • 16a Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
    • 16b Zhang H.-Y, Sun M, Ma Y.-N, Tian Q.-P, Yang S.-D. Org. Biomol. Chem. 2012; 10: 9627
    • 16c Fan S, He C.-Y, Zhang X. Chem. Commun. 2010; 46: 4926