Synlett 2017; 28(19): 2577-2580
DOI: 10.1055/s-0036-1588568
cluster
© Georg Thieme Verlag Stuttgart · New York

Chromium-Catalyzed, Regioselective Cross-Coupling of C–O Bonds by Using Organic Bromides as Reactants

Jinghua Tang
a   Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
b   Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, P. R. of China   Email: luomm@scu.edu.cn   Email: zengxiaoming@mail.xjtu.edu.cn
,
Meiming Luo*
a   Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
,
a   Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
b   Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, P. R. of China   Email: luomm@scu.edu.cn   Email: zengxiaoming@mail.xjtu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China, SCU, and Beijing National Laboratory for Molecular Sciences for financial support.
Further Information

Publication History

Received: 01 July 2017

Accepted after revision: 22 August 2017

Publication Date:
14 September 2017 (online)


Published as part of the Cluster C–O Activation

Abstract

We report a chromium-catalyzed cross-coupling of C–O bonds with widely accessible organic bromides as reactants for the preparation of ortho-arylated or -alkylated aromatic aldehydes at room temperature. The use of metallic magnesium is essential for the reaction to occur, giving it an advantage over previous reactions involving Grignard reagents that have to be prepared separately from organic halides before the coupling.

Supporting Information

 
  • References and Notes

  • 1 Johansson Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 2 Metal-Catalyzed Cross-Coupling Reactions . 2nd ed; . de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004
  • 3 Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Vol. 1. Wiley-VCH; Weinheim: 2004
  • 4 Wenkert E. Michelotti EL. Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
  • 5 Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
  • 6 Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
  • 7 Li B.-J. Yu D.-G. Sun C.-L. Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
  • 8 Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
  • 9 Tobisu M. Chatani N. Top. Organomet. Chem. 2012; 44: 35
  • 10 Su B. Cao Z.-C. Shi Z.-J. Acc. Chem. Res. 2015; 48: 886

    • For selected examples, see:
    • 11a Ohtsuki A. Sakurai S. Tobisu M. Chatani N. Chem. Lett. 2016; 45: 1277
    • 11b Tobisu M. Takahira T. Morioka T. Chatani N. J. Am. Chem. Soc. 2016; 138: 6711
    • 11c Nakamura K. Tobisu M. Chatani N. Org. Lett. 2015; 17: 6142
    • 11d Tobisu M. Takahira T. Chatani N. Org. Lett. 2015; 17: 4352
    • 11e Tobisu M. Morioka T. Ohtsuki A. Chatani N. Chem. Sci. 2015; 6: 3410
    • 11f Morioka T. Nishizawa A. Nakamura K. Tobisu M. Chatani N. Chem. Lett. 2015; 44: 1729
    • 11g Tobisu M. Yasutome A. Kinuta H. Nakamura K. Chatani N. Org. Lett. 2014; 16: 5572
    • 11h Tobisu M. Yamakawa K. Shimasaki T. Chatani N. Chem. Commun. 2011; 47: 2946
    • 11i Tobisu M. Shimasaki T. Chatani N. Chem. Lett. 2009; 38: 710
    • 11j Tobisu M. Shimasaki T. Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
    • 11k Tobisu M. Takahira T. Ohtsuki A. Chatani N. Org. Lett. 2015; 17: 680
  • 12 Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428

    • For selected examples, see:
    • 13a Kondo H. Kochi T. Kakiuchi F. Org. Lett. 2017; 19: 794
    • 13b Kondo H. Akiba N. Kochi T. Kakiuchi F. Angew. Chem., Int. Ed. 2015; 54: 9293
    • 13c Ogiwara Y. Kochi T. Kakiuchi F. Org. Lett. 2011; 13: 3254
    • 13d Ueno S. Mizushima E. Chatani N. Kakiuchi F. J. Am. Chem. Soc. 2006; 128: 16516
    • 13e Kakiuchi F. Usui M. Ueno S. Chatani N. Murai S. J. Am. Chem. Soc. 2004; 126: 2706

      For selected examples, see:
    • 14a Cao Z.-C. Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
    • 14b Zhao F. Zhang Y.-F. Wen J. Yu D.-G. Wei J.-B. Xi Z. Shi Z.-J. Org. Lett. 2013; 15: 3230
    • 14c Yu D.-G. Wang X. Zhu R.-Y. Luo S. Zhang X.-B. Wang B.-Q. Wang L. Shi Z.-J. J. Am. Chem. Soc. 2012; 134: 14638
    • 14d Yu D.-G. Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 7097
    • 14e Yu D.-G. Yu M. Guan B.-T. Li B.-J. Zheng Y. Wu Z.-H. Shi Z.-J. Org. Lett. 2009; 11: 3374
    • 14f Li B.-J. Xu L. Wu Z.-H. Guan B.-T. Sun C.-L. Wang B.-Q. Shi Z.-J. J. Am. Chem. Soc. 2009; 131: 14656
    • 14g Guan B.-T. Wang Y. Li B.-J. Yu D.-G. Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
    • 14h Guan B.-T. Xiang S.-K. Wang B.-Q. Sun Z.-P. Wang Y. Zhao K.-Q. Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 3268
    • 14i Guan B.-T. Xiang S.-K. Wu T. Sun Z.-P. Wang B.-Q. Zhao K.-Q. Shi Z.-J. Chem. Commun. 2008; 1437

      For selected examples, see:
    • 15a Gu Y. Martin R. Angew. Chem. Int. Ed. 2017; 56: 3187
    • 15b Zarate C. Nakajima M. Martin R. J. Am. Chem. Soc. 2017; 139: 1191
    • 15c Zarate C. Manzano R. Martin R. J. Am. Chem. Soc. 2015; 137: 6754
    • 15d Cornella J. Jackson EP. Martin R. Angew. Chem. Int. Ed. 2015; 54: 4075
    • 15e Correa A. Martin R. J. Am. Chem. Soc. 2014; 136: 7253
    • 15f Zarate C. Martin R. J. Am. Chem. Soc. 2014; 136: 2236
    • 15g Cornella J. Gómez-Bengoa E. Martin R. J. Am. Chem. Soc. 2013; 135: 1997
    • 16a Guo L. Liu X. Baumann C. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 15415
    • 16b Liu X. Hsiao C.-C. Kalvet I. Leiendecker M. Guo L. Schoenebeck F. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6093

      Rh-catalyzed functionalizations of C–O bonds have been recently disclosed by Chatani and co-workers; see:
    • 18a Tobisu M. Yasui K. Aihara Y. Chatani N. Angew. Chem. Int. Ed. 2017; 56: 1877
    • 18b Kinuta H. Tobisu M. Chatani N. J. Am. Chem. Soc. 2015; 137: 1593
  • 19 Cong X. Tang H. Zeng X. J. Am. Chem. Soc. 2015; 137: 14367
  • 20 Cao Z.-C. Luo Q.-Y. Shi Z.-J. Org. Lett. 2016; 18: 5978

    • For examples of cross-coupling reactions using organic halides as reactants mediated by metallic magnesium, see:
    • 21a Czaplik WM. Mayer M. von Wangelin AJ. Angew. Chem. Int. Ed. 2009; 48: 607
    • 21b Ilies L. Kobayashi M. Matsumoto A. Yoshikai N. Nakamura E. Adv. Synth. Catal. 2012; 354: 593
    • 21c Liu J.-H. Yang C.-T. Lu X.-Y. Zhang Z.-Q. Xu L. Cui M. Lu X. Xiao B. Fu Y. Liu L. Chem. Eur. J. 2014; 20: 15334
    • 21d Li Z. Sun H.-M. Shen Q. Org. Biomol. Chem. 2016; 14: 3314
  • 22 o-Arylated Arylcarbaldehydes 3am; General Procedure A dried Schlenk tube was charged with (o-methoxyaryl)aldimine 1 (0.2 mmol), Mg (11 mg, 0.44 mmol), and CrCl2 (3 mg, 0.02 mmol). The appropriate aryl bromide 2 (0.4 mmol) was added by a syringe under N2. THF (2 mL) was then added, and the mixture was stirred at r.t. for 12 h. The reaction was quenched with 3 N HCl (1 mL), and the resulting mixture was stirred at r.t. for another 0.5 h and then extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried (Na2SO4), and concentrated under vacuum to give a crude product that was purified by chromatography (silica gel) 1,1′:4′,1′′-Terphenyl-2-carbaldehyde (3b) Prepared by the general procedure from imine 1a (38 mg, 0.2 mmol) and 4-bromobiphenyl (2b). The crude product was purified by column chromatography [silica gel, EtOAc–PE (1:50)] to give a white solid; yield: 39 mg (75%); mp 111–113 °C; IR (neat): 3025, 2961, 2876, 1680, 1594, 1471, 1389, 1250, 1070, 1006, 856, 827 cm–1. 1H NMR (400 MHz, CDCl3): δ = 10.06 (s, 1 H), 8.04 (d, J = 8.0 Hz, 1 H), 7.71–7.65 (m, 5 H), 7.53–7.45 (m, 6 H), 7.37 (t, J = 7.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 192.6, 145.7, 141.2, 140.4, 136.8, 133.9, 133.8, 130.9, 130.7, 129.1, 128.0, 127.83, 127.82, 127.3.
  • 23 Shi Z. Glorius F. Chem. Sci. 2013; 4: 829