Synlett 2017; 28(04): 397-401
DOI: 10.1055/s-0036-1588926
synpacts
© Georg Thieme Verlag Stuttgart · New York

Development of Chalcogenide Catalysts towards Trifluoromethylthiolation

Jie Luo
Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. of China   Email: zhaoxd3@mail.sysu.edu.cn
,
Xiang Liu
Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. of China   Email: zhaoxd3@mail.sysu.edu.cn
,
Xiaodan Zhao*
Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. of China   Email: zhaoxd3@mail.sysu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 04 November 2016

Accepted after revision: 07 December 2016

Publication Date:
10 January 2017 (online)

Abstract

Efficient synthesis of trifluoromethylthiolated molecules, especially for chiral ones, is in great demand for the development of drugs. Developing new catalysis mode and new catalysts is the key to quickly expand this area. Our group discovered that Lewis basic chalcogenide catalysts could activate the N–SCF3 bond, which provided a new way for non- and asymmetric trifluoromethylthiolation. This Synpacts article highlights the recent advances we have achieved.

1 Introduction

2 Selenide-Catalyzed Nonasymmetric Trifluoromethylthiolation

3 Chiral Sulfide-Catalyzed Enantioselective Trifluoromethylthiolation

4 Conclusion

 
  • References

    • 1a Jeschke P. ChemBioChem. 2004; 5: 570
    • 1b Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 1c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1d Manteau B, Pazenok S, Vors J.-P, Leroux FR. J. Fluorine Chem. 2010; 131: 140
    • 1e Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
    • 2a Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
    • 2b Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 3a Ferry A, Billard T, Langlois BR, Bacqué E. Angew. Chem. Int. Ed. 2009; 48: 8551
    • 3b Tlili A, Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
    • 3c Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2014; 20: 16830
    • 3d Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
    • 3e Xu C, Ma B, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 9316
    • 3f Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 3g Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 3h Shao X, Xu C, Lu L, Shen Q. Acc. Chem. Res. 2015; 48: 1227

      For selected examples, see:
    • 4a Zhang C.-P, Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
    • 4b Baert F, Colomb J, Billard T. Angew. Chem. Int. Ed. 2012; 51: 10382
    • 4c Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
    • 4d Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
    • 4e Yang Y.-D, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N. J. Am. Chem. Soc. 2013; 135: 8782
    • 4f Pluta R, Nikolaienko P, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 1650
    • 4g Danoun G, Bayarmagnai B, Gruenberg MF, Goossen LJ. Chem. Sci. 2014; 5: 1312
    • 4h Liu J.-B, Xu X.-H, Chen Z.-H, Qing F.-L. Angew. Chem. Int. Ed. 2015; 54: 897
    • 4i Zheng H, Huang Y, Weng Z. Tetrahedron Lett. 2016; 57: 1397
    • 5a Bootwicha T, Liu X, Pluta R, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2013; 52: 12856
    • 5b Wang X, Yang T, Cheng X, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 12860
    • 5c Deng Q.-H, Rettenmeier C, Wadepohl H, Gade L.-H. Chem. Eur. J. 2014; 20: 93
    • 5d Zhu X.-L, Xu J.-H, Cheng D.-J, Zhao L.-J, Liu X.-Y, Tan B. Org. Lett. 2014; 16: 2192
    • 6a Luo J, Zhu Z, Liu Y, Zhao X. Org. Lett. 2015; 17: 3620
    • 6b Liu X, An R, Zhang X, Luo J, Zhao X. Angew. Chem. Int. Ed. 2016; 55: 5846
    • 6c Wu J.-J, Xu J, Zhao X. Chem. Eur. J. 2016; 22: 15265
    • 7a Denmark SE, Collins WR. Org. Lett. 2007; 9: 3801
    • 7b Denmark SE, Kalyani D, Collins WR. J. Am. Chem. Soc. 2010; 132: 15752
    • 7c Denmark SE, Kornfilt DJ. P, Vogler T. J. Am. Chem. Soc. 2011; 133: 15308
    • 7d Denmark SE, Chi HM. J. Am. Chem. Soc. 2014; 136: 3655
    • 7e Denmark SE, Chi HM. J. Am. Chem. Soc. 2014; 136: 8915
    • 7f Denmark SE, Rossi S, Webster MP, Wang H. J. Am. Chem. Soc. 2014; 136: 13016
    • 8a Zhou L, Tan CK, Jiang X, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474
    • 8b Zhou L, Chen J, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2011; 133: 9164
    • 8c Jiang X, Tan CK, Zhou L, Yeung Y.-Y. Angew. Chem. Int. Ed. 2012; 51: 7771
    • 8d Chen F, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
    • 8e Tay DW, Tsoi IT, Er JC, Leung GY. C, Yeung Y.-Y. Org. Lett. 2013; 15: 1310
    • 8f Ke Z, Tan CK, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2014; 136: 5627
    • 9a Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S. J. Org. Chem. 2012; 77: 9541
    • 9b Verma A, Jana S, Prasad CD, Yadav A, Kumar S. Chem. Commun. 2016; 52: 4179
    • 10a Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 10b Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 10c Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 10d Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748
    • 10e Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047