Synlett 2017; 28(15): 1990-1993
DOI: 10.1055/s-0036-1589059
letter
© Georg Thieme Verlag Stuttgart · New York

Suzuki–Miyaura Cross-Coupling Reactions in Acetic Acid Employing Sydnone-Derived Catalyst Systems

Ana-Luiza Lücke
Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Email: schmidt@ioc.tu-clausthal.de
,
Sascha Wiechmann
Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Email: schmidt@ioc.tu-clausthal.de
,
Tyll Freese
Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Email: schmidt@ioc.tu-clausthal.de
,
Andreas Schmidt*
Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany   Email: schmidt@ioc.tu-clausthal.de
› Author Affiliations
The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support
Further Information

Publication History

Received: 31 March 2017

Accepted after revision: 20 May 2017

Publication Date:
29 June 2017 (online)


Abstract

The catalyst system consisting of lithium N-phenylsydnone-4-carboxylate/Pd(PPh3)4 has proven to be an effective catalyst for the Suzuki–Miyaura reaction of 2,4-dinitrochlorobenzene with boronic acids in acetic acid at pH 5.7, whereas the N-phenylsydnone carbene palladium complex [sydPd(PPh3)2Br] required pH 8.0.

Supporting Information

 
  • References and Notes

    • 1a Guram AS. Milne JE. Tedrow S. Walker SD. In Science of Synthesis . Vol. 2012/5. Molander G.-A. Thieme; Stuttgart: 2012: 9
    • 1b De Meijere A. Bräse S. Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More . Wiley-VCH; Weinheim: 2014

    • Some recent reviews:
    • 1c Mo S. Zhang Z. Zhang G. Ding Y. Li QH. Curr. Org. Synth. 2017; 14: 462
    • 1d Almond-Thynne J. Blakemore DC. Pryde DC. Spivey AC. Chem. Sci. 2017; 8: 40
    • 1e Li C. Chen D. Tang W. Synlett 2016; 27: 2183
    • 1f Hussain I. Capricho J. Yawer MA. Adv. Synth. Catal. 2016; 358: 3320
    • 1g Oger N. Felpin F.-X. ChemCatChem. 2016; 8: 1998
    • 1h Das P. Linert W. Coord. Chem. Rev. 2016; 311: 1
    • 1i Rossi R. Bellina F. Lessi M. Manzini C. Marianetti G. Perego LA. Curr. Org. Chem. 2015; 19: 1302
    • 1j Maluenda I. Navarro O. Molecules 2015; 20: 7528
    • 1k Paul S. Islam MM. Islam SM. RSC Adv. 2015; 5: 42193
    • 1l Fyfe JW. B. Watson AJ. B. Synlett 2015; 26: 1139
    • 1m Glasspoole BW. Keske EC. Crudden CM. RSC Catal. Ser. 2015; 21: 521
    • 1n Lennox A. Lloyd-Jones G. RSC Catal. Ser. 2015; 21: 322
    • 1o Zhang D. Wang Q. Coord. Chem. Rev. 2015; 286: 1
    • 2a Kürti L. Czakó B. Strategic Applications of Named Reactions in Organic Synthesis . Elsevier Academic Press; Amsterdam: 2005: 448
    • 2b Willemse T. Schepens W. van Vlijemen HW. T. Maes BU. W. Ballet S. Catalysts 2017; 7: 74
    • 2c Prieto M. Mayor S. Lloyd-Williams P. Giralt E. J. Org. Chem. 2009; 74: 9202
    • 2d Prieto M. Mayor S. Rodríguez K. Lloyd-Williams P. Giralt E. J. Org. Chem. 2007; 72: 1047
    • 3a Schmidt A. Batsyts S. Smeyanov A. Freese T. Hübner EG. Nieger M. J. Org. Chem. 2016; 81: 4202
    • 3b Liu M. Nieger M. Schmidt A. Chem. Commun. 2015; 51: 477
    • 3c Schmidt A. Kindermann MK. J. Org. Chem. 1997; 62: 3910
    • 4a Liu M. Nieger M. Hübner E. Schmidt A. Chem. Eur. J. 2016; 22: 5416
    • 4b Schmidt A. Münster N. Dreger A. Angew. Chem. Int. Ed. 2010; 49: 2790 ; Angew. Chem. 2010, 122, 2851
  • 5 Wiechmann S. Freese T. Drafz MH. H. Hübner EG. Namyslo JC. Nieger M. Schmidt A. Chem. Commun. 2014; 50: 11822
    • 6a Rahimi A. Pápai I. Madarász Á. Gjikaj M. Namyslo JC. Schmidt A. Eur. J. Org. Chem. 2012; 754
    • 6b Rahimi A. Namyslo JC. Drafz M. Halm J. Hübner E. Nieger M. Rautzenberg N. Schmidt A. J. Org. Chem. 2011; 76: 7316
  • 7 Lücke A.-L. Wiechmann S. Freese T. Guan Z. Schmidt A. Z. Naturforsch., B: J. Chem. Sci 2016; 71: 643
    • 8a Gilchrist TL. In Science of Synthesis . Vol. 13. Storr RC. Gilchrist TL. Thieme; Stuttgart: 2014: 109
    • 8b Browne DL. Harrity JP. Tetrahedron 2010; 66: 553
    • 8c Earl JC. Mackney AW. J. Chem. Soc. 1935; 899
  • 9 Ollis WD. Stanforth SP. Ramsden CA. Tetrahedron 1985; 41: 2239
    • 10a Ollis WD. Ramsden CA. Adv. Heterocycl. Chem. 1976; 19: 1
    • 10b Ramsden CA. In Comprehensive Organic Chemistry . Vol. 4. Sammes PG. Pergamon Press; Oxford: 1979: 1171
  • 11 Kato H. Ohta M. Bull. Chem. Soc. Jpn. 1959; 32: 282
    • 12a Kalinin VN. She FM. Khandozhko VN. Petrovskii PV. Russ. Chem. Bull. 2001; 50: 525
    • 12b Kalinin V. Fan Min S. Petrovskii P. J. Organomet. Chem. 1989; 379: 195
  • 13 Schmidt A. Wiechmann S. Freese T. ARKIVOC 2013; (i): 424
    • 14a Wei K. Zhang B. Ni J. Geng J. Zhang J. Xu D. Cui Y. Liu Y. Inorg. Chem. Commun. 2015; 51: 103
    • 14b Wang H. Wang J. Qiu W. Yang F. Liu X. Tang J. Chin. J. Chem. 2010; 28: 2416
    • 14c Yang W. Liu Q. J. Chem. Commun. 2010; 46: 2659
    • 14d Schaarschmidt D. Lang H. ACS Catal. 2011; 1: 411

      Examples for Suzuki–Miyaura reactions without additional water:
    • 15a Wong PY. Chow WK. Chung KH. So CM. Lau CP. Kwong FY. Chem. Commun. 2011; 47: 8328
    • 15b Bhayana B. Fors BP. Buchwald SL. Org. Lett. 2011; 9: 3954
  • 16 General Procedure for the Preparation of Compounds 7a–h Under a nitrogen atmosphere samples of 1-chloro-2,4-dinitrobenzene (1, 0.050 g, 0.2 mmol) were dissolved in anhydrous 1,4-dioxane (8 mL) and treated with the catalyst (cat. 16, 10 mol%). The mixtures were subjected to ultrasound irradiation for 5 min and then stirred at r.t. for additional 25 min. Then, the corresponding boronic acid 6ah (2 equiv), sodium carbonate (4.7 mmol), and water (2 mL) were added. The mixtures were heated at 70 °C for 30 min. After cooling to r.t. the mixtures were dried over MgSO4. The resulting crude products were purified by column chromatography over silica gel (40–60 mesh) using a PE-CH2Cl2 (1:3) mixture as eluent. The analytical data and the characterization of each produced compound can be found in the Supporting Information. 2,4-Dinitro-1,1′:4′,1′′-terphenyl (7f) A sample of 1-(4-biphenyl)-boronic acid (0.098 g, 0.5 mmol), cat. 1 (10 mol%), Na2CO3 (4.7 mmol), and AcOH (17 mmol) were used. The reaction was monitored by TLC. The product was isolated as a yellowish solid; yield 91%; mp 154 °C. 1H NMR (600 MHz, CDCl3): δ = 7.41–7.42 (m, 3 H, H-2′, H-4′, H-6′), 7.47–7.49 (m, 2 H, H-3′′, H-5′′), 7.62–7.64 (d, J = 7.7 Hz, 2 H, H-2′′, H-6′′), 7.69–7.72 (m, 3 H, H-3′, H-5′, H-6′), 8.46–8.48 (dd, J = 7.7 Hz, 1 H, H-5), 8.72 (s, 1 H, H-3) ppm. 13C NMR (150 MHz, CDCl3): δ = 119.7 (+, 1 C, C-3), 126.5 (+, 1 C, C-5), 127.1 (+, 2 C, C-6′′, C-2′′), 127.7 (+, 2 C, C-3′, C-5′), 128.0 (+, 1 C, C-4′′), 128.1 (+, 2 C, C-6′, C-2′), 128.9 (+, 2 C, C-3′′, C-5′′), 133.1 (+, 1 C, C-6), 133.9 (o, 1 C, C-1′), 139.7 (o, 1 C, C-1′′), 141.8 (o, 1 C, C-1), 142.4 (o, 1 C, C-4′), 146.8 (o, 1 C, C-4), 149.0 (o, 1 C, C-2) ppm. IR (ATR): ν = 666, 833, 1274, 1489, 1598, 3079 cm–1. MS (EI-MS, 70 eV): m/z (C18H12N2O4) = 320.1. HRMS (EI, 70 eV): m/z calcd for [C18H12N2O4]+: 320.0797; found: 320.0797.