Synlett
DOI: 10.1055/s-0036-1589099
letter
© Georg Thieme Verlag Stuttgart · New York

Symmetrical Trichlorotriazine Derivatives as Efficient Reagents for One-Pot Synthesis of 3-Acetyl-2-chloroquinolines from Acetanilides under Vilsmeier–Haack Conditions

Bhooshan Muddam, P. Venkanna, M. Venkateswarlu, M. Satish Kumar, K. C. Rajanna*
  • Department of Chemistry, Osmania University, Hyderabad-500 007, T. S., India   Email: kcrajannaou@yahoo.com
Further Information

Publication History

Received: 11 June 2017

Accepted after revision: 28 August 2017

Publication Date:
28 August 2017 (eFirst)

Abstract

Symmetrical trichlorotriazine derivatives such as 2,4,6-trichloro-1,3,5-triazine and trichloroisocyanuric acid were explored as Vilsmeier–Haack type reagents in the presence of N,N-dimethylacetamide for the effective synthesis of 3-acetyl-2-chloroquinolines from acetanilides. Ultrasonication led to shorter reaction times than conventional heating and gave yields comparable to those obtained under reflux conditions.

Supporting Information

 
  • References and Notes

    • 2a Oehme G. Paetzold E. Selke R. J. Mol. Catal. 1992; 71: L1
    • 2b Grassert I. Paetzold E. Oehme G. Tetrahedron 1993; 49: 6605
    • 2c Kumar A. Ohem G. Roque JP. Schwarze M. Selke R. Angew. Chem. Int. Ed. Engl. 1994; 33: 2197
    • 2d Grassert I. Vill V. Oehme G. J. Mol. Catal. A: Chem. 1997; 116: 231
    • 3a Grasset I. Schinkowski K. Valhardt D. Oehme G. Chirality 1998; 10: 754
    • 3b Oehme G. Grassert I. Ziegler S. Meisel R. Fuhrmann H. Catal. Today 1998; 42: 459
    • 3c Oehme G. Grassert I. Paetzold E. Meisel R. Drexler K. Fuhrmann H. Coord. Chem. Rev. 1999; 185: 585
    • 4a In Heterocyclic Compounds . Vol. 4, Chap. 1 Elderfield R. Chapman & Hall; New York; 1952: 1
    • 4b Meth-Cohn O. Narine B. Tetrahedron Lett. 1978; 19: 2045
  • 5 Patel HV. Vyas KV. Fernandes PS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1990; 29: 836
  • 6 Craig JC. Pearson PE. J. Med. Chem. 1971; 14: 1221
  • 7 Dillard RD. Pavey DE. Benslay DN. J. Med. Chem. 1973; 16: 251
  • 8 Bhat B. Bhaduri AP. Synthesis 1984; 673
  • 9 Ali MM. Tasneem, Rajanna KC. Prakash PK. S. Synlett 2001; 251
  • 10 Ali MM. Sana S. Tasneem, Rajanna KC. Saiprakash PK. Synth. Commun. 2002; 32: 1351
  • 11 Rajanna KC. Ali MM. Sana S. Tasneem, Saiprakash PK. J. Dispersion Sci. Technol. 2004; 25,17; and references cited therein
    • 12a Vilsmeier A. Haack A. Ber. Dtsch. Chem. Ges. 1927; 60: 119
    • 12b Arnold Z. Collect. Czech. Chem. Commun. 1959; 24: 4048
    • 12c Meth-Cohn O. Stanforth SP. In Comprehensive Organic Synthesis . Vol. 2 Trost BM. Fleming I. Chap. 3.5 Pergamon; Oxford; 1991: 777
    • 12d Marson CM. Tetrahedron. 1992; 48: 3659
  • 13 Ho T.-L. In Fieser and Fieser’s Reagents for Organic Synthesis. Wiley; New York; 2017
  • 14 Amaresh RR. Perumal PT. Synth. Commun. 1997; 27: 337
    • 15a Meth-Cohn O. Narine AB. Tetrahedron Lett. 1978; 19: 2045
    • 15b Khan AK. Shoeb A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1985; 24: 62
    • 15c Su W. Weng Y. Jiang L. Yang Y. Zhao L. Chena Z. Li Z. Li J. Org. Prep. Proced. Int. 2010; 42: 503
    • 16a Sreenivasulu M. Rao KG. S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1989; 28: 584
    • 16b Mahata PK. Venkatesh C. Syam Kumar UK. Ila H. Junjappa H. J. Org. Chem. 2003; 68: 3966
    • 16c Chupp JP. Metz S. J. Heterocycl. Chem. 1979; 16: 65
    • 16d Katritzky AR. Arend M. J. Org. Chem. 1998; 63: 9989
  • 17 Hou D.-R. Sun C.-S. Sie W.-S. Jian J.-Y. Hsu Y. J. Chin. Chem. Soc. (Taipei) 2004; 51: 671
  • 18 Venkanna P. Rajanna KC. Satish Kumar M. Bismillah Ansari M. Ali MM. Tetrahedron Lett. 2015; 56: 5164
  • 19 Smolin EM. Rapoport L. s-Triazines and Derivatives . Interscience; New York; 1959
  • 20 Quirke ME. In Comprehensive Heterocyclic Chemistry . Vol. 3, Chap. 2.2 Katritzky AR. Rees CW. Pergamon; Oxford; 1984: 457
  • 21 Bartholomew D. In Comprehensive Heterocyclic Chemistry II . Vol. 6 Katritzky AR. Chap. 6.12 Rees, C. W.; Scriven, E. F. V.; Pergamon; Oxford; 1996: 575
  • 22 Comins DL. O’Connor S. Adv. Heterocycl. Chem. 1988; 44: 243
  • 23 Giacomelli G. Porcheddu A. De Luca L. Curr. Org. Chem. 2004; 8: 1497
    • 24a Luo G. Xu L. Poindexter GS. Tetrahedron Lett. 2002; 43: 8909
    • 24b Venkataraman K. Wagle DR. Tetrahedron Lett. 1979; 20: 3037
    • 24c De Luca L. Giacomelli G. Porcheddu A. J. Org. Chem. 2001; 66: 7907
  • 25 Kangani CO. Day BW. Org. Lett. 2008; 10: 2645
    • 26a De Luca L. Giacomelli G. Porcheddu A. J. Org. Chem. 2002; 67: 6272
    • 26b Furuya Y. Ishihara K. Yamamoto H. J. Am. Chem. Soc. 2005; 127: 11240
    • 26c Betti C. Landini D. Maia A. Pasi M. Synlett 2008; 908
  • 27 Hamon F. Prié G. Lecornué F. Papot S. Tetrahedron Lett. 2009; 50: 6800
  • 28 De Luca L. Giacomelli G. Porcheddu A. Org. Lett. 2002; 4: 553
  • 29 Venkanna P. Satish Kumar M. Rajanna K. C. Ali M. M. Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 2015; 45: 97
  • 30 Venkanna P. Rajanna K. C. Satish Kumar M. Ansari M. B. Ali M. M. Tetrahedron Lett. 2015; 56: 5164
  • 31 TCTA/DMA and TCCA/DMA ReagentsTCTA or TCCA (0.110 mol) and DMA (0.13 mol) were added to CH2Cl2 (50 mL) in a round-bottomed flask and the mixture was stirred for about 3 h at r.t. to give a white precipitate.
  • 32 Cyclization/Acetylation of Acetanilides by Using TCTA/DMA or TCCA/DMA; General ProcedureThe appropriate acetanilide (9.8 mmol) was added to the TCTA/DMA or TCCA/DMA reagent, prepared as above, and the mixture was stirred constantly under reflux. When the reaction was complete (TLC), H2O (50.0 mL) was added, and the mixture was stirred to extract the inorganic components into the H2O and the crude product into the organic layer. The crude product was purified by column chromatography [Merck Silica Gel 60 (230–400 mesh), EtOAc–hexane].
  • 33 Cyclization/Acetylation of Acetanilides by Using TCTA/DMA or TCCA/DMA with Sonication; General ProcedureThe method for the ultrasonically assisted reactions was similar to the classical method. The flask containing the reaction mixture, prepared as detailed above, was placed in a sonicator (KQ-250B; Kunshan Ultrasonic Instruments, Kunshan) at r.t., and the progress of the reaction was monitored by TLC. The product was separated and worked up by similar procedure to that described above.3-Acetyl-2-chloroquinoline (Tables 1 and 2, entry 1) solid; yield: (85%); mp 74–76 °C (Lit. 75–76 °C); IR (KBr): 1705 (C=O) cm–1. 1H NMR (CDCl3): δ = 2.70 (s, 3 H, COCH3), 7.0–8.25 (m, 5 H, arom). MS ESI: m/z = 205 [M+].