Synlett 2017; 28(18): 2373-2389
DOI: 10.1055/s-0036-1590868
account
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Reactions Between Boronic Acids and N-Sulfonylhydrazones or Diazo Compounds: Reductive Coupling Processes and Beyond

Miguel Paraja, Manuel Plaza, Carlos Valdés*
  • Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo, C/Julián Clavería 8, Oviedo 33006, Spain   Email: acvg@uniovi.es
Financial support of this work by the Ministerio de Economía y Competitividad (MINECO) of Spain: Grants CTQ2013-41336-P and CTQ2016-76794-P (AEI/FEDER, UE). An FPI predoctoral fellowship (MINECO, Spain) to M. Paraja and an FPU predoctoral fellowship (MECD, Spain) to M. Plaza are gratefully acknowledged.
Further Information

Publication History

Received: 19 June 2017

Accepted after revision: 13 July 2017

Publication Date:
22 August 2017 (eFirst)

Abstract

The metal-free reaction between diazo compounds and boronic acids has been established in recent years as a powerful C(sp3)–C bond-forming reaction. This account covers the recent advances in this area. First, the various synthetic applications of reactions with N-sulfonylhydrazones as a convenient source of diazo compounds is discussed. These transformations can be regarded as reductive couplings of carbonyl compounds. Also covered is the incorporation of other mild sources of diazo compounds in these reactions: diazotization of amines and oxidation of hydrazones. Finally, the development of sequential and cascade processes is presented.

1 Introduction

2 Early Work: Reactions Between Alkylboranes and Diazo Compounds or N-Sulfonylhydrazones

2.1 Reactions Between Alkylboranes and Diazo Compounds

2.2 Reactions Between Alkylboranes and N-Sulfonylhydrazones

3 Reactions of N-Sulfonylhydrazones and Diazo Compounds with Aryl and Alkylboronic Acids

3.1 Reactions of Arylboroxines with Diazo Compounds

3.2 Reductive Couplings of N-Sulfonylhydrazones with Aryl- and Alkylboronic Acids

3.3 Three-Component Reactions Between α-Halotosylhydrazones, Boronic Acids and Indoles

4 Reactions of N-Tosylhydrazones with Alkenylboronic Acids

5 Synthesis of Allenes by Reactions with Alkynyl N-Nosylhydrazones

6 Reactions with Diazo Compounds Generated by Diazotization of Primary Amines

7 Reactions with Diazo Compounds Generated by Oxidation of ­Hydrazones

8 Reactions with Trimethylsilyldiazomethane

9 Cascade Cyclization Reactions with γ- and δ-Cyano-N-tosylhydrazones

10 Summary and Outlook

 
  • References

  • 1 Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
  • 2 Li H. Zhang Y. Wang J. Synthesis 2013; 45: 3090
  • 3 Hooz J. Linke S. J. Am. Chem. Soc. 1968; 90: 5936
    • 4a Hooz J. Linke S. J. Am. Chem. Soc. 1968; 90: 6891
    • 4b Hooz J. Gunn DM. Chem. Commun. 1969; 139
    • 4c Hooz J. Morrison GF. Can. J. Chem. 1970; 48: 868
    • 5a Brown HC. Midland MM. Levy AB. J. Am. Chem. Soc. 1972; 94: 3662
    • 5b Hooz J. Bridson JN. Calzada JG. Brown HC. Midland MM. Levy AB. J. Org. Chem. 1973; 38: 2574
    • 5c Brown HC. Salunkhe AM. Synlett 1991; 684
    • 6a Kabalka GW. Maddox JT. Bogas E. J. Org. Chem. 1994; 59: 5530
    • 6b Kabalka GW. Maddox JT. Bogas E. Tejedor D. Ross EJ. Synth. Commun. 1996; 26: 999
    • 6c Kabalka GW. Maddox JT. Bogas E. Kelley SW. J. Org. Chem. 1997; 62: 3688
  • 7 Bamford WR. Stevens TS. J. Chem. Soc. 1952; 4735
  • 8 Peng C. Zhang W. Yan G. Wang J. Org. Lett. 2009; 11: 1667
    • 9a Aggarwal VK. de Vicente J. Pelotier B. Holmes IP. Bonnert RV. Tetrahedron Lett. 2000; 41: 10327
    • 9b Aggarwal VK. Alonso E. Bae I. Hynd G. Lydon KM. Palmer MJ. Patel M. Porcelloni M. Richardson J. Stenson RA. Studley JR. Vasse J.-L. Winn CL. J. Am. Chem. Soc. 2003; 125: 10926
    • 9c Fulton JR. Aggarwal VK. de Vicente J. Eur. J. Org. Chem. 2005; 1479
    • 10a Barluenga J. Moriel P. Valdés C. Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
    • 10b Barluenga J. Tomás-Gamasa M. Moriel P. Aznar F. Valdés C. Chem. Eur. J. 2008; 14: 4792
  • 11 Barluenga J. Tomás-Gamasa M. Aznar F. Valdés C. Nat. Chem. 2009; 1: 494
  • 12 Nakagawa S. Bainbridge KA. Butcher K. Ellis D. Klute W. Ryckmans T. ChemMedChem 2012; 7: 233
  • 13 Kupracz L. Kirschning A. J. Flow Chem. 2013; 3: 11
  • 14 Li X. Feng Y. Lin L. Zou G. J. Org. Chem. 2012; 77: 10991
  • 15 Allwood DM. Blakemore DC. Brown AD. Ley SV. J. Org. Chem. 2013; 79: 328
  • 16 Shen X. Gu N. Liu P. Ma X. Xie J. Liu Y. He L. Dai B. RSC Adv. 2015; 5: 63726
  • 17 Shen X. Gu N. Liu P. Ma X. Xie J. Liu Y. Dai B. Chin. J. Chem. 2016; 34: 1033
  • 18 Wu G. Deng Y. Luo H. Zhou J. Li T. Zhang Y. Wang J. Chem. Commun. 2016; 52: 5266
  • 19 Pérez-Aguilar MC. Valdés C. Angew. Chem. Int. Ed. 2012; 51: 5953
  • 20 Plaza M. Pérez-Aguilar MC. Valdés C. Chem. Eur. J. 2016; 22: 6253
    • 21a Liu Z. Li Q. Yang Y. Bi X. Chem. Commun. 2017; 53: 2503
    • 21b Liu Z. Li Q. Liao P. Bi X. Chem. Eur. J. 2017; 23: 4756
  • 22 Yang Y. Liu Z. Porta A. Zanoni G. Bi X. Chem. Eur. J. 2017; 23: 9009
  • 23 Argintaru OA. Ryu D. Aron I. Molander GA. Angew. Chem. Int. Ed. 2013; 52: 13656
  • 24 Morandi B. Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 938
    • 25a Vedejs E. Chapman RW. Fields SC. Lin S. Schrimpf MR. J. Org. Chem. 1995; 60: 3020
    • 25b Kim BJ. Matteson DS. Angew. Chem. Int. Ed. 2004; 43: 3056
  • 26 Molander GA. Ryu D. Angew. Chem. Int. Ed. 2014; 53: 14181
  • 27 Wu G. Deng Y. Wu C. Wang X. Zhang Y. Wang J. Eur. J. Org. Chem. 2014; 4477
  • 28 Wu G. Deng Y. Wu C. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2014; 53: 10510
  • 29 Tran DN. Battilocchio C. Lou S.-B. Hawkins JM. Ley SV. Chem. Sci. 2015; 6: 1120
  • 30 Battilocchio C. Fleist F. Hafner A. Simon M. Tran DN. Allwood DM. Blakemore DC. Ley SV. Nat. Chem. 2016; 8: 360
  • 31 Wu C. Wu G. Zhang Y. Wang J. Org. Chem. Front. 2016; 3: 817
  • 32 Poh J.-S. Lau S.-H. Dykes IG. Tran DN. Battilocchio C. Ley SV. Chem. Sci. 2016; 7: 6803
  • 33 Plaza M. Valdés C. J. Am. Chem. Soc. 2016; 138: 12061