Synlett 2018; 29(01): 65-70
DOI: 10.1055/s-0036-1590891
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling Reactions of Di(hetero)arylmanganese Reagents and Primary and Secondary Alkyl Halides

Maximilian S. Hofmayer
a   Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13, Haus F, 81377 München, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
,
Jeffrey M. Hammann
a   Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13, Haus F, 81377 München, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
,
Gérard Cahiez
b   Institut de Recherche de Chimie Paris, CNRS, Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
,
a   Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13, Haus F, 81377 München, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 04 July 2017

Accepted after revision: 03 August 2017

Publication Date:
30 August 2017 (online)


Abstract

An iron-catalyzed cross-coupling between di(hetero)arylmanganese reagents and primary and secondary alkyl halides is reported. No rearrangement of secondary alkyl halides to unbranched products was observed in these C–C bond-forming reactions.

Supporting Information

 
  • References and Notes

    • 1a Cross-Coupling Reactions. A Practical Guide . Miyaura N. Springer; Berlin: 2002
    • 1b Metal-Catalyzed Cross-Coupling Reactions . Diederich F. de Meijere A. Wiley-VCH; Weinheim: 2004
    • 1c Modern Drug Synthesis . Li JJ. Johnson DS. Wiley-VCH; Weinheim: 2010
    • 1d Organotransition Metal Chemistry . Hartwig JF. University Science Books; Sausalito, CA: 2010
  • 2 FeCl2 ca. 375 €/mol, PdCl2 ca. 4500 €/mol; prices retrieved from Alfa Aesar in May 2017.
    • 3a LD50(FeCl2, rat oral) = 900 mg/kg; LD50(NiCl2, rat oral) = 186 mg/kg).
    • 3b Egorova KS. Ananikov VP. Angew. Chem. Int. Ed. 2016; 55: 12150

      For selected examples, see:
    • 4a Fürstner A. Brunner H. Tetrahedron Lett. 1996; 37: 7009
    • 4b Fürstner A. Leitner A. Angew. Chem. Int. Ed. 2002; 41: 609
    • 4c Fürstner A. Leitner A. Méndez M. Krause H. J. Am. Chem. Soc. 2002; 124: 13856
    • 4d Martin R. Fürstner A. Angew. Chem. Int. Ed. 2004; 43: 3955
    • 4e Scheiper B. Bonnekessel M. Krause H. Fürstner A. J. Org. Chem. 2004; 69: 3943
    • 4f Sherry BD. Fürstner A. Acc. Chem. Res. 2008; 41: 1500
    • 4g Sun C.-L. Krause H. Fürstner A. Adv. Synth. Catal. 2014; 356: 1281
    • 4h Casitas A. Krause H. Goddard R. Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 1521
    • 4i Fürstner A. ACS Cent. Sci. 2016; 2: 778

      For selected examples, see:
    • 5a Cahiez G. Avedissian H. Synthesis 1998; 1199
    • 5b Duplais C. Bures F. Sapountzis I. Korn TJ. Cahiez G. Knochel P. Angew. Chem. Int. Ed. 2004; 43: 2968
    • 5c Cahiez G. Chaboche C. Mahuteau-Betzer F. Ahr M. Org. Lett. 2005; 7: 1943
    • 5d Cahiez G. Duplais C. Moyeux A. Org. Lett. 2007; 9: 3253
    • 5e Cahiez G. Habiak V. Duplais C. Moyeux A. Angew. Chem. Int. Ed. 2007; 46: 4364
    • 5f Cahiez G. Moyeux A. Buendia J. Duplais C. J. Am. Chem. Soc. 2007; 129: 13788
    • 5g Cahiez G. Gager O. Habiak V. Synthesis 2008; 2636
    • 5h Cahiez G. Foulgoc L. Moyeux A. Angew. Chem. Int. Ed. 2009; 48: 2969
    • 5i Benischke AD. Breuillac AJ. A. Moyeux A. Cahiez G. Knochel P. Synlett 2016; 27: 471

      For selected examples, see:
    • 6a Nakamura M. Matsuo K. Ito S. Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
    • 6b Nakamura M. Ito S. Matsuo K. Nakamura E. Synlett 2005; 1794
    • 6c Hatakeyama T. Nakamura M. J. Am. Chem. Soc. 2007; 129: 9844
    • 6d Hatakeyama T. Yoshimoto Y. Gabriel T. Nakamura M. Org. Lett. 2008; 10: 5341
    • 6e Ito S. Fujiwara Y.-I. Nakamura E. Nakamura M. Org. Lett. 2009; 11: 4306
    • 6f Noda D. Sunada Y. Hatakeyama T. Nakamura M. Nagashima H. J. Am. Chem. Soc. 2009; 131: 6078
    • 6g Hatakeyama T. Hashimoto T. Kondo Y. Fujiwara Y. Seike H. Takaya H. Tamada Y. Ono T. Nakamura M. J. Am. Chem. Soc. 2010; 132: 10674
    • 6h Nakamura E. Yoshikai N. J. Org. Chem. 2010; 75: 6061
    • 6i Liu Z.-Q. Zhang Y. Zhao L. Li Z. Wang J. Li H. Wu L.-M. Org. Lett. 2011; 13: 2208
    • 6j Kuzmina OM. Steib AK. Flubacher D. Knochel P. Org. Lett. 2012; 14: 4818
    • 6k Lin Y.-Y. Wang Y.-J. Lin C.-H. Cheng J.-H. Lee C.-F. J. Org. Chem. 2012; 77: 6100
    • 6l Shang R. Ilies L. Matsumoto A. Nakamura E. J. Am. Chem. Soc. 2013; 135: 6030
    • 6m Nakamura E. Hatakeyama T. Ito S. Ishizuka K. Ilies L. Nakamura M. Org. React. 2014; 83: 1
    • 6n Agrawal T. Cook SP. Org. Lett. 2014; 16: 5080
    • 6o Kuzmina OM. Steib AK. Moyeux A. Cahiez G. Knochel P. Synthesis 2015; 47: 1696
    • 6p Shang X. Liu Z.-Q. Synthesis 2015; 47: 1706
    • 6q Agata R. Iwamoto T. Nakagawa N. Isozaki K. Hatakeyama T. Takaya H. Nakamura M. Synthesis 2015; 47: 1733
    • 6r Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 6s Greiner R. Blanc R. Petermayer C. Karaghiosoff K. Knochel P. Synlett 2016; 27: 231
    • 6t Halli J. Schneider AE. Beisel T. Kramer P. Shemet A. Manolikakes G. Synthesis 2017; 49: 849
    • 6u Parchomyk T. Koszinowski K. Synthesis 2017; 49: 3269
  • 7 Hofmayer MS. Hammann JM. Haas D. Knochel P. Org. Lett. 2016; 18: 6456
    • 8a Korn TJ. Knochel P. Angew. Chem. Int. Ed. 2005; 44: 2947
    • 8b Korn TJ. Schade MA. Cheemala MN. Wirth S. Guevara SA. Cahiez G. Knochel P. Synthesis 2006; 3547
    • 8c Korn TJ. Schade MA. Wirth S. Knochel P. Org. Lett. 2006; 8: 725
    • 8d Wunderlich SH. Knochel P. Angew. Chem. Int. Ed. 2009; 48: 9717
    • 8e Steib AK. Thaler T. Komeyama K. Mayer P. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 3303
    • 8f Kuzmina OM. Steib AK. Markiewicz JT. Flubacher D. Knochel P. Angew. Chem. Int. Ed. 2013; 52: 4945
    • 8g Kuzmina OM. Steib AK. Fernandez S. Boudot W. Markiewicz JT. Knochel P. Chem. Eur. J. 2015; 21: 8242
    • 8h Benischke AD. Knoll I. Rerat A. Gosmini C. Knochel P. Chem. Commun. 2016; 52: 3171
  • 9 For detailed information, see the Supporting Information.
  • 10 Wunderlich SH. Kienle M. Knochel P. Angew. Chem. Int. Ed. 2009; 48: 7256
  • 11 Starting materials were prepared according to literature procedures with only little deviation: Cheung CW. Ren P. Hu X. Org. Lett. 2014; 16: 2566
  • 12 Typical Procedure for the Iron-Catalyzed Cross-Coupling of Di(hetero)arylmanganese Reagents with Alkyl Halides A dry and argon-flushed 20 mL Schlenk tube, equipped with a stirring bar and a septum, was charged with anhydrous FeCl2 (25 mg, 0.20 mmol, 20 mol%). The alkyl halide (1 mmol, 1.0 equiv) in THF (1 mL) was added, and the mixture was cooled to –20 °C. The di(hetero)arylmanganese reagent (0.7 mmol, 0.7 equiv) was added dropwise, and the mixture was allowed to warm to r.t. overnight. A sat. aq solution of NH4Cl (5 mL) and EtOAc (5 mL) were added, the phases were separated, and the aqueous phase was extracted with EtOAc (3 × 20 mL). The combined organic phases were washed with brine, dried over Na2SO4, and the solvents were evaporated. The residue was subjected to column chromatography purification (SiO2; i-hexane/EtOAc) yielding the corresponding title compound. 1-(3-Isopropylcyclohexyl)-4-methoxybenzene (3b) Following the typical procedure, 1d (252 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) reacts with di(p-anisyl)manganese (2a, 0.7 mmol, 0.7 equiv) at –20 °C. The solution was allowed to warm to r.t., was stirred for 16 h, and was worked up as usual. The crude product was purified by column chromatography on silica using i-hexane/EtOAc (100:2) as an eluent to afford 3b as a colorless oil (51%, 119 mg, 0.51 mmol, dr = 83:17). 1H NMR (400 MHz, CDCl3): δ = 7.19–7.12 (m, 2 H), 6.90–6.83 (m, 2 H), 3.80 (s, 3 H), 2.48 (tt, J = 11.7, 3.4 Hz, 1 H), 1.95–1.81 (m, 3 H), 1.76 (dtt, J = 11.6, 3.4, 1.8 Hz, 1 H), 1.54–1.33 (m, 3 H), 1.33–1.21 (m, 2 H), 1.12 (dt, J = 12.8, 11.8 Hz, 1 H), 0.90 (dd, J = 6.8, 3.7 Hz, 6 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 157.8, 140.5, 127.8, 113.8, 55.4, 44.6, 44.0, 38.4, 34.7, 33.2, 29.5, 27.0, 20.0, 19.9 ppm. FTIR (ATR): 2954, 2922, 2852, 1512, 1462, 1444, 1244, 1176, 1038, 824, 806 cm–1. MS (EI, 70 eV): m/z (%) = 232 (55), 189 (78), 147 (100), 134 (68), 121 (77). HRMS (EI, 70 eV): m/z calcd for [C16H24O]: 232.1827; found: 232.1821. tert-Butyl{3-[2-fluoro-(1,1′-biphenyl)-4-yl]butoxy}dimethylsilane (3p) Following the typical procedure, tert-butyl(3-iodobutoxy)dimethylsilane (1j, 314 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) reacts with 2f (0.7 mmol, 0.7 equiv) at –20 °C. The solution was allowed to warm to r.t., was stirred for 16 h, and was worked up as usual. The crude product was purified by column chromatography on silica using i-hexane/EtOAc (100:4) as an eluent to afford 3p as colorless oil (80%, 288 mg, 0.80 mmol). 1H NMR (600 MHz, CDCl3): δ = 7.57–7.54 (m, 2 H), 7.46–7.42 (m, 2 H), 7.38–7.34 (m, 2 H), 7.05 (dd, J = 7.8, 1.7 Hz, 1 H), 7.00 (dd, J = 12.0, 1.7 Hz, 1 H), 3.59 (dt, J = 10.2, 6.2 Hz, 1 H), 3.52 (dt, J = 10.2, 6.7 Hz, 1 H), 2.95 (h, J = 7.1 Hz, 1 H), 1.82 (dt, J = 7.1, 6.3 Hz, 2 H), 1.29 (d, J = 7.0 Hz, 3 H), 0.90 (s, 9 H), 0.03 (d, J = 1.5 Hz, 6 H) ppm. 13C NMR (150 MHz, CDCl3): δ =159.9 (d, J = 247.4 Hz), 149.3 (d, J = 6.7 Hz), 136.1, 130.6, 129.1, 128.5, 127.5, 126.5 (d, J = 13.4 Hz), 123.3, 114.7 (d, J = 22.6 Hz), 61.1, 41.1, 35.9, 26.1, 22.2, 18.4, –5.2 ppm. FTIR (ATR): 2956, 2928, 2856, 1484, 1472, 1462, 1418, 1254, 1098, 1076, 1010, 980, 900, 870, 832, 810, 774, 766, 724, 696 cm–1. MS (EI, 70 eV): m/z (%) = 302 (22), 301 (100), 207 (22), 179 (77), 165 (35). HRMS (EI, 70 eV): m/z calcd for [C21H28FOSi+]: 343.1888; found: 343.1872 [M+ – CH3].