Synlett 2017; 28(19): 2609-2613
DOI: 10.1055/s-0036-1590937
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Fluorine-Containing Tetraarylanthracenes via Ruthenium-Catalyzed C–O or C–F Arylation and their Crystal Structures

Akiko Izumoto
a   Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan   Email: kakiuchi@chem.keio.ac.jp
,
Hikaru Kondo
a   Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan   Email: kakiuchi@chem.keio.ac.jp
,
Takuya Kochi
a   Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan   Email: kakiuchi@chem.keio.ac.jp
,
Fumitoshi Kakiuchi*
a   Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan   Email: kakiuchi@chem.keio.ac.jp
b   JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
› Author Affiliations
This work was supported in part by JSPS KAKENHI Grant Numbers JP15H05839 in Middle Molecular Strategy, and CREST and ACT-C (Grant Number JPMJCR12Y8) from the Japan Science and Technology Agency (JST), Japan. H.K. gratefully acknowledges the Japan Society for the Promotion of Science (JSPS) for a Research Fellowship for Young Scientists (JP16J02904). T.K. is also grateful for support by JSPS KAKENHI Grant Number 16H01040 (Precisely Designed Catalysts with Customized Scaffolding).
Further Information

Publication History

Received: 02 August 2017

Accepted after revision: 26 September 2017

Publication Date:
08 November 2017 (online)


Published as part of the Cluster C–O Activation

Abstract

Tetraarylanthracenes containing several fluoro groups were synthesized using the ruthenium-catalyzed C–O or C–F arylation with arylboronates and their structural and spectroscopic studies were conducted. The RuH2(CO)(PPh3)3-catalyzed C–O arylation of aromatic ketones was found to be effective for the introduction of aryl groups containing multiple fluoro groups. Anthracenes possessing fluorinated aryl groups were prepared in two steps from 1,4,5,8-tetramethoxyanthraquinone by C–O arylation and reduction of the carbonyl groups. A tetraphenylanthracene containing a fluorinated anthracene moiety was also prepared using C–F phenylation of octafluoroanthraquinone. Single-crystal X-ray diffraction analysis showed that the positions of fluoro groups on the tetraarylanthracenes lead to notable difference in the crystal packing structures. The larger difference between the tetraarylanthracenes was observed in the fluorescence spectra in the solid state than those in chloroform.

Supporting Information

 
  • References and Notes

    • 1a Bendikov M. Wudl F. Perepichka DF. Chem. Rev. 2004; 104: 4891
    • 1b Grimsdale AC. Müllen K. Angew. Chem. Int. Ed. 2005; 44: 5592
    • 1c Anthony JE. Chem. Rev. 2006; 106: 5028
    • 1d Coropceanu V. Cornil J. da Silva Hilho DA. Olivier Y. Silbey R. Brédas J.-L. Chem. Rev. 2007; 107: 926
    • 1e Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 1f Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
    • 1g Allard S. Forster M. Souharce B. Thiem H. Scherf U. Angew. Chem. Int. Ed. 2008; 47: 4070
    • 1h Figueira-Duarte P. Müllen K. Chem. Rev. 2011; 111: 7260
    • 1i Narita A. Wang X.-Y. Feng X. Müllen K. Chem. Soc. Rev. 2015; 44: 6616
    • 2a Berger R. Resnati G. Metrangolo P. Weber E. Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 2b Bao Z. Lovingger AJ. Brown J. J. Am. Chem. Soc. 1998; 120: 207
    • 2c Sakamoto Y. Komatsu S. Suzuki T. J. Am. Chem. Soc. 2001; 123: 4643
    • 2d Sakamoto Y. Komatsu S. Suzuki T. Synth. Met. 2003; 133: 361
    • 2e Sakamoto Y. Suzuki T. Kobayashi M. Gao Y. Fukai Y. Inoue Y. Sato F. Tokito S. J. Am. Chem. Soc. 2004; 126: 8138
    • 2f Swartz CR. Parkin SR. Bullock JE. Anthony JE. Mayer AC. Malliaras GG. Org. Lett. 2005; 7: 3163
    • 2g Letizia JA. Facchetti A. Stern CL. Ratner MA. Marks TJ. J. Am. Chem. Soc. 2005; 127: 13476
    • 2h Tannaci JF. Noji M. McBee JL. Tilley TD. J. Org. Chem. 2008; 73: 7895
    • 2i Guru Row TN. Coord. Chem. Rev. 1999; 183: 81
    • 2j Coates GW. Dunn AR. Henling LM. Ziller JW. Lobkovsky EB. Grubbs RH. J. Am. Chem. Soc. 1998; 120: 3641
    • 2k Ogden WA. Ghosh S. Bruzek MJ. McGarry KA. Balhorn L. Young V. Purvis LJ. Wegwerth SE. Zhang ZR. Serratore NA. Cramer CJ. Gagliardi L. Douglas CJ. Cryst. Growth Des. 2017; 17: 643
    • 2l Sakamoto Y. Suzuki T. J. Org. Chem. 2017; 82: 8111
  • 3 Kakiuchi F. Kochi T. Murai S. Synlett 2014; 25: 2390
    • 4a Kakiuchi F. Kan S. Igi K. Chatani N. Murai S. J. Am. Chem. Soc. 2003; 125: 1698
    • 4b Kakiuchi F. Matsuura Y. Kan S. Chatani N. J. Am. Chem. Soc. 2005; 127: 5936
    • 4c Hiroshima S. Matsumura D. Kochi T. Kakiuchi F. Org. Lett. 2010; 12: 5318
    • 4d Ogiwara Y. Miyake M. Kochi T. Kakiuchi F. Organometallics 2017; 36: 159
    • 5a Kakiuchi F. Usui M. Ueno S. Chatani N. Murai S. J. Am. Chem. Soc. 2004; 126: 2706
    • 5b Ueno S. Mizushima E. Chatani N. Kakiuchi F. J. Am. Chem. Soc. 2006; 128: 16516
    • 5c Ueno S. Kochi T. Chatani N. Kakiuchi F. Org. Lett. 2009; 11: 855
    • 5d Kondo H. Akiba N. Kochi T. Kakiuchi F. Angew. Chem. Int. Ed. 2015; 54: 9293
    • 5e Kondo H. Kochi T. Kakiuchi F. Org. Lett. 2017; 19: 794
    • 6a Ueno S. Chatani N. Kakiuchi F. J. Am. Chem. Soc. 2007; 129: 6098
    • 6b Koreeda T. Kochi T. Kakiuchi F. J. Am. Chem. Soc. 2009; 131: 7238
    • 6c Koreeda T. Kochi T. Kakiuchi F. Organometallics 2013; 32: 682
    • 6d Koreeda T. Kochi T. Kakiuchi F. J. Organomet. Chem. 2013; 741: 148
  • 7 Kawamoto K. Kochi T. Sato M. Mizushima E. Kakiuchi F. Tetrahedron Lett. 2011; 52: 5888
    • 8a Kitazawa K. Kochi T. Sato M. Kakiuchi F. Org. Lett. 2009; 11: 1951
    • 8b Kitazawa K. Kochi T. Nitani M. Ie Y. Aso Y. Kakiuchi F. Chem. Lett. 2011; 40: 300
    • 8c Matsumura D. Kitazawa K. Terai S. Kochi T. Ie Y. Nitani M. Aso Y. Kakiuchi F. Org. Lett. 2012; 14: 3882
    • 8d Suzuki Y. Yamada K. Watanabe K. Kochi T. Ie Y. Aso Y. Kakiuchi F. Org. Lett. 2017; 19: 3791
  • 9 To compare the reactivity between anthraquinone 4 and 8, we attempted the reaction of 4 with 2c in toluene and 8 with 2c in pinacolone at 125 °C for 20 h, but both of reactions were failed to give 5c. In the C–H arylation, pinacolone is considered to act as a hydrogen atom scavenger (see ref. 4b).
  • 10 Typical Procedure for C–O Tetraarylation of 8 (Table [3], Entry 2) To an oven-dried 20 mL Schlenk tube was added 1,4,5,8-tetramethoxyanthraquinone (8, 0.25 mmol), arylboronate 2c (2.5 mmol), RuH2(CO)(PPh3)3 (0.05 mmol), and 2 mL of dry p-xylene. The resulting mixture was heated at 150 °C for 20 h and cooled to room temperature. The crude material was passed through a basic aluminium oxide column to remove the remaining arylboronate. Tetraarylation product 5c (248 mg, 76%) was obtained as a yellow solid after purification by silica gel column chromatography (hexane/AcOEt = 15:1); mp 220–223 °C (dec.). 1H NMR (400 MHz, CDCl3): δ = 6.98–7.00 (m, 4 H), 7.05–7.10 (m, 4 H), 7.16–7.23 (m, 4 H), 7.53 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 117.2 (d, J = 17.9 Hz), 117.7 (d, J = 17.9 Hz), 124.6 (dd, J = 6.6, 3.8 Hz), 134.6, 135.2, 136.4 (dd, J = 6.1, 4.2 Hz), 140.0, 149.9 (dd, J = 249.0, 11.8 Hz), 150.1 (dd, J = 250.0, 10.8 Hz), 186.2. IR (KBr): 3773 (w), 3062 (w), 2925 (w), 2345 (w), 1941 (w), 1658 (s), 1610 (m), 1522 (s), 1465 (m), 1422 (m), 1315 (m), 1268 (s), 1119 (m), 1028 (m), 893 (m), 816 (s), 767 (m) cm–1. HRMS (DART-TOF): m/z [M + H]+ calcd for C38H17F8O2: 657.1101; found: 657.1105.
  • 11 CCDC 1566101 (10d), 1566102 (10e), and 1566103 (10h) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.

    • Selected recent publications on relationships between packing structures and solid-state fluorescence properties:
    • 12a Sekiguchi S. Kondo K. Sei Y. Akita M. Yoshizawa M. Angew. Chem. Int. Ed. 2016; 55: 6906
    • 12b Hisamatsu S. Masu H. Takahashi M. Kishikawa K. Kohmoto S. Cryst. Growth Des. 2015; 15: 2291
    • 12c Li R. Xiao S. Li Y. Lin Q. Zhang R. Zhao J. Yang C. Zou K. Li D. Yi T. Chem. Sci. 2014; 5: 3922
    • 12d Hinoue T. Shigenoi Y. Sugino M. Mizobe Y. Hisaki I. Miyata M. Tohnai N. Chem. Eur. J. 2012; 18: 4634