Synlett 2017; 28(17): 2340-2344
DOI: 10.1055/s-0036-1590970
letter
© Georg Thieme Verlag Stuttgart · New York

Stereocontrolled Synthesis of Multisubstituted 1,3-Dienes via an Allene–Claisen Rearrangement

Kenji Matsumoto*
a   Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan   eMail: kmatsumoto@ph.bunri-u.ac.jp
,
Naoyuki Mizushina
b   Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
,
Masahiro Yoshida
a   Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan   eMail: kmatsumoto@ph.bunri-u.ac.jp
,
Mitsuru Shindo*
c   Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan   eMail: shindo@cm.kyushu-u.ac.jp
› Institutsangaben
This work was partially supported by JSPS KAKENHI (grant numbers JP16H01157 and JP26293004), the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry (M. S.), the NOVARTIS Foundation for the Promotion of Science, the Kurata Memorial Hitachi Science and Technology Foundation (K. M.), and the Cooperative Research Program of the Network Joint Research Center for Materials and Devices
Weitere Informationen

Publikationsverlauf

Received: 28. April 2017

Accepted after revision: 03. Juli 2017

Publikationsdatum:
27. Juli 2017 (online)


Abstract

We herein developed a stereoselective synthetic method for the preparation of multisubstituted 1,3-dienes via an allene–Claisen rearrangement. The Claisen rearrangement of anti-allenyl alcohols provided (1E,3Z)-1,3-dienes, which are essential components of bongkrekic acid, in high stereoselectivities. To demonstrate the synthetic utility of the resulting 1,3-dienes, further functional transformations and Diels–Alder reactions are described.

Supporting Information

 
  • References and Notes

    • 1a van Veen AG. Mertens WK. Recl. Trav. Chim. Pays-Bas 1934; 53: 257
    • 1b Lijimbach GW. M. Cox HC. Berends W. Tetrahedron 1970; 26: 5993
    • 1c Lijimbach GW. M. Cox HC. Berends W. Tetrahedron 1971; 27: 1839
    • 1d de Bruijin J. Frost DJ. Nugteren DH. Gaudemer A. Lijmbach GW. M. Cox HC. Berends W. Tetrahedron 1973; 29: 1541
    • 1e Zylber J. Gaudemer F. Gaudemer A. Experientia 1973; 29: 648
    • 2a Zamzami N. Marchetti P. Castedo M. Hirsch T. Susin SA. Masse B. Kroemer G. FEBS Lett. 1996; 384: 53
    • 2b Marchetti P. Castedo M. Susin SA. Zamzami N. Hirsch T. Macho A. Haeffner A. Hirsh T. Geuskens M. Kroemer G. J. Exp. Med. 1996; 184: 1155
    • 2c Marchetti P. Hirsh T. Zamzami N. Castedo M. Decaudin D. Susin SA. Masse B. Kroemer G. J. Immunol. 1996; 157: 4830
    • 2d For a review, see: Green DR. Reed JC. Science 1998; 281: 1309
    • 3a Okuda K. Hasui K. Abe M. Matsumoto K. Shindo M. Chem. Res. Toxicol. 2012; 25: 2253
    • 3b Yamada Y. Nakamura K. Furukawa R. Kawamura E. Moriwaki T. Matsumoto K. Okuda K. Shindo M. Harashima H. J. Pharm. Sci. 2013; 102: 1008
    • 3c Okazaki H. Takeda S. Ikeda E. Fukunishi Y. Ishii H. Taniguchi A. Tokuyasu M. Himeno T. Kakizoe K. Matsumoto K. Shindo M. Aramaki H. J. Toxicol. Sci. 2015; 40: 223
    • 3d Takeda S. Okazaki H. Kudo T. Matsumoto K. Shindo M. Aramaki H. Anticancer Res. 2016; 36: 5171
  • 4 Corey EJ. Tramontano J. J. Am. Chem. Soc. 1984; 106: 462
    • 5a Shindo M. Sugioka T. Umaba Y. Shishido K. Tetrahedron Lett. 2004; 45: 8863
    • 5b Sato Y. Aso Y. Shindo M. Tetrahedron Lett. 2009; 50: 4164
    • 5c Matsumoto K. Suyama M. Fujita S. Moriwaki T. Sato Y. Aso Y. Muroshita S. Matsuo H. Monda K. Okuda K. Abe M. Fukunaga H. Kano A. Shindo M. Chem. Eur. J. 2015; 21: 11590
  • 6 Kanematsu M. Shindo M. Yoshida M. Shishido K. Synthesis 2009; 2893
    • 7a Francais A. Leyva A. Etxebarria-Jardi G. Ley SV. Org. Lett. 2010; 12: 340
    • 7b Francais A. Leyva A. Etxebarria-Jardi G. Pena J. Ley SV. Chem. Eur. J. 2011; 17: 329
    • 8a Kelly SE. Alkene Synthesis . In Comprehensive Organic Synthesis . Vol. 1. Trost BM. Fleming I. Pergamon Press; Oxford: 1991: 729
    • 8b Takeda T. Modern Carbonyl Olefination . Wiley-VCH; Weinheim: 2004
    • 8c De Paolis M. Chataigner I. Maddaluno J. Top. Curr. Chem. 2012; 327: 87

      For reviews, see:
    • 9a Hiersemann M. Nubbemeyer U. The Claisen Rearrangement: Methods and Applications . Wiley-VCH; Weinheim: 2007
    • 9b Castro AM. M. Chem. Rev. 2004; 104: 2939
    • 9c Chai Y. Hong S.-P. Lindsay HA. McFarland C. McIntosh MC. Tetrahedron 2002; 58: 2905
    • 10a Hong S.-P. Lindsay HA. Yaramasu T. Zhang X. McIntosh MC. J. Org. Chem. 2002; 67: 2042
    • 10b Clark DA. Kulkarni AA. Kalbarczyk K. Schertzer B. Diver ST. J. Am. Chem. Soc. 2006; 128: 15632
    • 10c Posner GH. Crouch RD. Kinter CM. Carry J.-C. J. Org. Chem. 1991; 56: 6981
    • 11a Hoppe D. Gonschorrek C. Egert E. Schmidt D. Angew. Chem., Int. Ed. Engl. 1985; 24: 700
    • 11b Egert E. Beck H. Schmidt D. Gonschorrek C. Hoppe D. Tetrahedron Lett. 1987; 28: 789
    • 11c Behrens U. Wolff C. Hoppe D. Synthesis 1991; 644
  • 12 Krafft ME. Hallal KM. Vidhani DV. Cran JW. Org. Biomol. Chem. 2011; 9: 7535
  • 13 Ireland RE. Mueller RH. J. Am. Chem. Soc. 1972; 94: 5897
  • 14 Representative Procedure: To a solution of 4a (122 mg, 0.50 mmol) in THF (5 mL) cooled to −78 °C under argon, TBSCl (151 mg, 1.0 mmol) and KHMDS (0.5 M in toluene, 2.0 mL, 1.0 mmol) were added. After stirring at −78 °C for 3 h, the reaction mixture was stirred for a further 13 h at r.t. prior to concentrating in vacuo. The resulting mixture was diluted with MeOH (2 mL) and treated with K2CO3 (150 mg). After stirring at r.t. for 4 h, the reaction was quenched by the addition of 3 M HCl, and the resulting solution was extracted with CH2Cl2. The combined organic layer was washed with brine, dried over MgSO4, filtered, and concentrated in vacuo to give a crude product, which was purified by silica gel column chromatography (EtOAc/hexane, 1:10 to 1:2) to give 5a (89 mg, 70%). Recrystallization from hexane afforded 5a as colorless needles (105–106 °C). 1H NMR (CDCl3, 600 MHz): δ = 1.05 (t, J = 7.5 Hz, 3 H), 1.09 (t, J = 7.5 Hz, 3 H), 2.23 (q, J = 7.8 Hz, 2 H), 2.37 (q, J = 7.5 Hz, 2 H), 3.45 (s, 2 H), 6.51 (d, J = 16.2 Hz, 1 H), 7.18–7.22 (m, 1 H), 7.20 (d, J = 16.2 Hz, 1 H), 7.27–7.32 (m, 2 H), 7.39–7.42 (m, 2 H). 13C NMR (CDCl3, 150 MHz): δ = 12.9 (q), 13.9 (q), 25.1 (t), 26.8 (t), 33.7 (t), 123.2 (s), 126.3 (d), 126.8 (d), 127.08 (d), 127.11 (d), 128.5 (d), 138.1 (s), 148.6 (s), 177.3 (s). IR (KBr): 2969, 1699, 1624, 1595 cm–1. MS (EI): m/z (%) = 244 [M+], 215 [M+−Et], 169 (100). Anal. calcd for C16H20O2: C 78.65, H 8.25; found: C 78.55, H 8.22
  • 15 Wick AE. Felix D. Steen K. Eschenmoser A. Helv. Chim. Acta 1964; 47: 2425
  • 16 A mechanism via the boat-like transition state (not shown) is also possible
  • 17 These diastereomer ratios were determined by 1H NMR spectroscopic analysis after the stereospecific cyclization of allenyl alcohols 8 with AgNO3, see: Marshall JA. Wang X.-J. J. Org. Chem. 1991; 56: 4913
  • 18 Hoppe et al. suggested that this could originate from a slow interconversion between TS-syn-1 and TS-anti-1, see: ref. 11b
  • 19 Bal BS. Childers WE. Jr. Pinnick HW. Tetrahedron 1981; 37: 2091
  • 20 We previously reported that the dienoic acid-containing partial structure of BKA inhibited mitochondrial functions, see: Yamamoto A. Hasui K. Matsuo H. Okuda K. Abe M. Matsumoto K. Harada K. Yoshimura Y. Yamamoto T. Ohkura K. Shinohara Y. Shindo M. Chem. Biol. Drug Des. 2015; 86: 1304
  • 21 Clark DA. Basile BS. Karnofel WS. Diver ST. Org. Lett. 2008; 10: 4927