Synlett 2017; 28(17): 2295-2298
DOI: 10.1055/s-0036-1590972
letter
© Georg Thieme Verlag Stuttgart · New York

Aqueous, One-Pot, Three-Component Reaction for Efficient Synthesis of 2-[4-(Arylsulfonyl)piperazin-1-yl]-1,3-benzothiazole, ‑1H-benzimidazole, or -1,3-benzoxazole Derivatives

MCP Division, Discovery Building D-203, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500607, India   eMail: dilip.kommula@gmail.com
,
M. S. R. Murty
MCP Division, Discovery Building D-203, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500607, India   eMail: dilip.kommula@gmail.com
› Institutsangaben
K.D. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance through the 12th Five Year plan projects “Affordable Cancer Therapeutics (ACT)’’ (CSC 0301) and “Small Molecules in Lead Exploration (SMiLE)” (CSC0111)
Weitere Informationen

Publikationsverlauf

Received: 14. Mai 2017

Accepted after revision: 28. Juni 2017

Publikationsdatum:
03. August 2017 (online)


Abstract

A simple and efficient synthetic protocol has been developed involving a one-pot three-component reaction of a 2-chlorobenzazole, piperazine, and an arenesulfonyl chloride under aqueous conditions at room temperature in the absence of a catalyst, ligand, or base. By using this protocol, a variety of 2-[4-(arylsulfonyl)piperazin-1-yl]-1,3-benzothiazole, -1H-benzimidazole, and -1,3-benzoxazole derivatives were synthesized in excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Rotstein BH. Zaretsky S. Rai V. Yudin AK. Chem. Rev. 2014; 114: 8323
    • 1b Armstrong RW. Combs AP. Tempest PA. Brown SD. Keating TA. Acc. Chem. Res. 1996; 29: 123
    • 2a Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
    • 2b Multicomponent Reactions . Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 4a Balme G. Bossharth E. Monteiro N. Eur. J. Org. Chem. 2003; 4101
    • 4b Bräse S. Gil C. Knepper K. Bioorg. Med. Chem. 2002; 10: 2415
    • 4c Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 5a Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259
    • 5b Wender PA. Handy ST. Wright DL. Chem. Ind. (London) 1997; 765
    • 6a Breslow R. Acc. Chem. Res. 1991; 24: 159
    • 6b Herrmann WA. Kohlpaintner CW. Angew. Chem. Int. Ed. Engl. 1993; 32: 1524
    • 6c Li CJ. Chem. Rev. 1993; 93: 2023
    • 6d Kobayashi S. Manabe K. Acc. Chem. Res. 2002; 35: 209
    • 6e Okuhara T. Chem. Rev. 2002; 102: 3641
  • 7 Head-Gordon T. Hura G. Chem. Rev. 2002; 102: 2651
    • 8a Lindström UM. Chem. Rev. 2002; 102: 2751
    • 8b Gawande MB. Bonifácio VD. B. Luque R. Branco PS. Varma RS. Chem. Soc. Rev. 2013; 42: 5522
  • 9 Hayashi Y. Angew. Chem. Int. Ed. 2006; 45: 8103
    • 10a Tundo P. Anastas P. Black DStC. Breen J. Collins T. Memoli S. Miyamoto J. Polyakoff M. Tumas W. Pure Appl. Chem. 2000; 72: 1207
    • 10b Manabe K. Iimura S. Sun XM. Kobayashi S. J. Am. Chem. Soc. 2002; 124: 11971
    • 10c Tsukinoki T. Nagashima S. Mitoma Y. Tashiro M. Green Chem. 2000; 2: 117
    • 10d Bigi F. Conforti ML. Maggi R. Piccinno A. Sartori G. Green Chem. 2000; 2: 101
    • 11a Murty MS. R. Ram KR. Rao RV. Yadav JS. Murty US. N. Kumar KP. Med. Chem. Res. 2011; 20: 626
    • 11b Kamal A. Khan MN. A. Reddy KS. Rohini K. Bioorg. Med. Chem. 2007; 15: 1004
    • 12a Murty MS. R. Ram KR. Rao RV. Yadav JS. Rao JV. Cheriyan VT. Anto RJ. Med. Chem. Res. 2011; 20: 576
    • 12b Kim JS. Gatto B. Yu C. Liu A. Liu LF. LaVoie EJ. J. Med. Chem. 1996; 39: 992
    • 12c Zaharia V. Ignat A. Palibroda N. Ngameni B. Kuete V. Fokunang CN. Moungang ML. Ngadjui BT. Eur. J. Med. Chem. 2010; 45: 5080
  • 13 Roth T. Morningstar ML. Boyer PL. Hughes SH. Buckheit RW. Jr. Michejda CJ. J. Med. Chem. 1997; 40: 4199
  • 14 Azam F. El-gnidi BA. Alkskas IA. Ahmed MA. J. Enzyme Inhib. Med. Chem. 2010; 25: 818
  • 15 Massari S. Daelemans D. Barreca ML. Knezevich A. Sabatini S. Cecchetti V. Marcello A. Pannecouque C. Tabarrini O. J. Med. Chem. 2010; 53: 641
  • 16 Hofer S. Kratschmar DV. Schernthanner B. Vuorinen A. Schuster D. Odermatt A. Easmon J. Bioorg. Med. Chem. Lett. 2013; 23: 5397
  • 17 Wang L. Kofler M. Brosch G. Melesina J. Sippl W. Martinez ED. Easmon J. PLoS One 2015; 10: 1
  • 18 Liu KG. Lo JR. Comery TA. Zhang GM. Zhang JY. Kowal DM. Smith DL. Di L. Kerns EH. Schechter LE. Robichaud AJ. Bioorg. Med. Chem. Lett. 2009; 19: 1115
    • 19a Monguchi D. Fujiwara T. Furukawa H. Mori A. Org. Lett. 2009; 11: 1607
    • 19b Wang Q. Schreiber SL. Org. Lett. 2009; 11: 5178
    • 19c Kawano T. Hirano K. Satoh T. Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 19d Cho SH. Kim JY. Lee SY. Chang S. Angew. Chem. Int. Ed. 2009; 48: 9127
    • 19e Kim JY. Cho SH. Joseph J. Chang S. Angew. Chem. Int. Ed. 2010; 49: 9899
    • 19f Guo S. Qian B. Xie Y. Xia C. Huang H. Org. Lett. 2011; 13: 522
    • 19g Matsuda N. Hirano K. Satoh T. Miura M. Org. Lett. 2011; 13: 2860
  • 20 Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
  • 21 Uday Kumar R. Reddy KH. V. Anil Kumar BS. P. Satish G. Reddy VP. Nageswar YV. D. Tetrahedron Lett. 2016; 57: 637
  • 22 Holland HL. Chem. Rev. 1988; 88: 473
  • 23 Block E. Angew. Chem. Int. Ed. Engl. 1992; 31: 1135
  • 24 Bouissane L. El Kazzouli S. Léonce S. Pfeiffer B. Rakib EM. Khouili M. Guillaumet G. Bioorg. Med. Chem. 2006; 14: 1078
  • 25 Weber A. Casini A. Heine A. Kuhn D. Supuran CT. Scozzafava A. Klebe G. J. Med. Chem. 2004; 47: 550
  • 26 Al-Ansary GH. Ismail MA. H. Abou El Ella DA. Eid S. Abouzid KA. M. Eur. J. Med. Chem. 2013; 68: 19
  • 27 Pingaew R. Prachayasittikul S. Ruchirawat S. Prachayasittikul VV. Med. Chem. Res. 2014; 23: 1768
  • 28 Martyn DC. Cortese JF. Tyndall E. Dick J. Mazitschek R. Munoz B. Clardy J. Bioorg. Med. Chem. Lett. 2010; 20: 218
  • 29 Harish KP. Mohan KN. Mallesha L. Prasanna kumar BN. Eur. J. Med. Chem. 2013; 65: 276
  • 30 Jia ZJ. Su T. Zucket JF. Wu Y. Goldman EA. Li W. Zhang P. Clizbe LA. Song Y. Bauer SM. Huang W. Woolfrey J. Sinha U. Arfsten AE. Hutchaleelaha A. Hollenbach SJ. Lambing JL. Scarborough RM. Zhu B.-Y. Bioorg. Med. Chem. Lett. 2004; 14: 2073
  • 31 Fan H. Xu G. Chen Y. Jiang Z. Zhang S. Yang Y. Ji R. Eur. J. Med. Chem. 2007; 42: 1137
  • 32 Fieser LF. Fieser M. Fieser and Fieser’s Reagents for Organic Synthesis . Vol. 1. Wiley; New York: 1967: 1179
  • 33 Murty MS. R. Rami Reddy N. Yadav JS. J. Sulfur Chem. 2006; 27: 589
    • 34a Kommula D. Madugula SR. M. J. Iran. Chem. Soc. 2017; 14: 1665
    • 34b Murty MS. R. Katiki MR. Rao BR. Babu NJ. Buddana SK. Prakasham RS. Synth. Commun. 2014; 44: 2724
    • 34c Murty MS. R. Katiki MR. Kommula D. Can. Chem. Trans. 2016; 4: 47
    • 34d Murty MS. R. Penthala R. Buddana SK. Prakasham RS. Das P. Polepalli S. Jain N. Bojja S. Med. Chem. Res. 2014; 23: 4579
  • 35 2-[4-(Substituted arylsulfonyl)piperazin-1-yl]-1,3-benzothiazole, -1H-imidazole, and -1,3-oxazole Derivatives; General Procedure The appropriate arenesulfonyl chloride (1.0 mmol), piperazine (2.0 mmol), and 2-benzazole (1.0 mmol) were mixed in H2O (3 mL), and the mixture was stirred at r.t for 2–3 h until the starting materials were completely consumed (TLC). The aqueous layer was then extracted with EtOAc (3 × 10 mL), and the organic layers were combined, washed with H2O (30 mL) and sat. brine (30 mL), dried (Na2SO4), filtered, and concentrated under reduced pressure. The resulting crude product was washed with excess Et2O and crystallized from EtOH. 2-[4-(Phenylsulfonyl)piperazin-1-yl]-1,3-benzoxazole (Table2, Entry 1) White solid; yield: 0.29 g (85%); mp 244–246 °C; 1H NMR (500 MHz, CDCl3): δ = 7.77 (dd, J = 5.3, 3.4 Hz, 2 H), 7.65 – 7.59 (m, 1 H), 7.54 (dd, J = 10.4, 4.7 Hz, 2 H), 7.33 (d, J = 8.0 Hz, 1 H), 7.23 (d, J = 8.0 Hz, 1 H), 7.16 (dd, J = 7.8, 1.1 Hz, 1 H), 7.03 (dd, J = 7.8, 1.1 Hz, 1 H), 3.81 (t, J = 5.1 Hz, 4 H), 3.16 (t, J = 5.1 Hz, 4 H). 13C NMR (126 MHz, CDCl3): δ = 168.0, 152.3, 135.4, 133.2, 130.8, 129.3, 127.7, 126.2, 121.9, 120.8, 119.4, 47.8, 45.4. ESI-MS: m/z = 344 [M + H]+.