Synlett 2017; 28(19): 2665-2669
DOI: 10.1055/s-0036-1590973
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Active Manganese-Mediated Acylation of Alcohols with Acid Chlorides or Anhydrides

Seong-Ryu Joo, Young-Jin Youn, Young-Ran Hwang, Seung-Hoi Kim*
  • Department of Chemistry, Dankook University, 119 Anseo Cheonan, 31116, Republic of Korea   Email: kimsemail@dankook.ac.kr
Further Information

Publication History

Received: 07 June 2017

Accepted after revision: 03 July 2017

Publication Date:
24 August 2017 (eFirst)

Abstract

To explore further the practical uses of highly active manganese (Mn*), a variety of alcohols were treated with Mn*, and the resulting complexes were coupled with acid chlorides and/or acetic anhydride in the absence of any extra catalyst. The subsequent reactions took place smoothly under mild conditions, providing the corresponding O-acylation products in good to excellent isolated yields.

 
  • References and Notes

  • 1 Green’s Protective Groups in Organic Synthesis . Wuts PG. M. Greene TW. Wiley-Interscience; Hoboken; 2007. 4th ed

    • For recent reports, see:
    • 2a Prajapti SK. Nagarsenkar A. Babu BN. Tetrahedron Lett. 2014; 55: 910
    • 2b Liu Z. Ma Q. Liu Y. Wang Q. Org. Lett. 2014; 16: 236
    • 2c Lu N. Chang W.-H. Tu W.-H. Li C.-K. Chem. Commun. 2011; 47: 727
    • 2d Vuluga D. Legros J. Crousse B. Bonnet-Delpon D. Chem. Eur. J. 2010; 16: 1776
    • 2e Sakakura A. Kawajiri K. Ohkubo T. Kosugi Y. Ishihara K. J. Am. Chem. Soc. 2007; 129: 14775
    • 2f Parac-Vogt TN. Deleersnyder K. Binnemans K. Eur. J. Org. Chem. 2005; 1810
    • 2g Chen T.-C. Kuo J.-H. Pawar VD. Munot YS. Weng S.-S. Ku C.-H. Liu C.-Y. J. Org. Chem. 2005; 70: 1188
    • 2h Tai A. Kulkarni SS. Hung S.-C. J. Org. Chem. 2003; 68: 8719
    • 2i Sano T. Ohashi K. Oriyama T. Synthesis 1999; 1141

      For recent reports, see:
    • 3a Kumar UN. Reddy BS. Reddy VP. Bandichhor R. Tetrahedron Lett. 2014; 55: 910
    • 3b Baldwin JN. Nord NA. O’Donnell DB. Mohan SR. Tetrahedron Lett. 2012; 53: 6946
    • 3c Taylor EJ. Williams MJ. J. Bull DS. Tetrahedron Lett. 2012; 53: 4074
    • 3d Zarei A. Hajipour AR. Khazdooz L. Synth. Commun. 2011; 41: 1772
    • 3e Das R. Chakraborty D. Synthesis 2011; 1621
    • 3f Yadav P. Lagarkha R. Zahoor A. Asian J. Chem. 2010; 22: 5155
    • 3g Shirini F. Zolfigol MA. Aliakbar A.-R. Albadi J. Synth. Commun. 2010; 40: 1022
    • 3h Meshram GG. Patil VD. Synth. Commun. 2009; 39: 4384
    • 3i Rajabi F. Tetrahedron Lett. 2009; 50: 395
    • 3j Kumar R. Chauhan PM. S. Tetrahedron Lett. 2008; 49: 5475
    • 3k Yoon H.-J. Lee S.-M. Kim J.-H. Cho H.-J. Choi J.-W. Lee S.-H. Lee Y.-S. Tetrahedron Lett. 2008; 49: 3165
    • 3l Moghadam M. Tangestaninejad S. Mirkhani V. Mohammadpoor-Baltork I. Taghavi SA. J. Mol. Catal. A: Chem. 2007; 274: 217
    • 3m Ahmed K. Naseer KA. Srinivasan R. Srikanth VY. Krishnaji T. ­Tetrahedron Lett. 2007; 48: 3813
    • 3n Bosco JW. J. Agrahari A. Saikia AK. Tetrahedron Lett. 2006; 47: 4065
    • 3o Ahmed N. van Lier JE. Tetrahedron Lett. 2006; 47: 5345
    • 3p Tale RH. Adude RN. Tetrahedron Lett. 2006; 47: 7263
    • 3q Srikanth Reddy T. Narashimhulu M. Suryakiran N. Chinni Mahesh K. Ashalatha K. Venkateswarlu Y. Tetrahedron Lett. 2006; 47: 6825
    • 3r Sarvari MH. Shargi H. Tetrahedron 2005; 61: 10903
    • 3s Tamaddon F. Amrollahi MA. Sharafat L. Tetrahedron Lett. 2005; 46: 7841
    • 3t Torregiani E. Seu G. Minassi A. Appendino G. Tetrahedron Lett. 2005; 46: 2193
    • 3u Ghosh R. Swarupananda M. Chakraborty A. Tetrahedron Lett. 2005; 46: 177
    • 3v Yadav JS. Narsaiah AV. Reddy BV. S. Basak AK. Nagaiah K. J. Mol. Catal. A: Chem. 2005; 230: 107
    • 3w Bartoli G. Bosco M. Dalpozzo R. Marcantoni E. Massaccesi M. Rindali S. Sambri L. Synlett 2003; 39
    • 3x Lugemwa FN. Shaikh K. Hochstedt E. Catalysts 2003; 3: 954
    • 3y Nakae Y. Kusaki I. Sato T. Synlett 2001; 1584
    • 3z Orita A. Tanahashi C. Kakuda A. Otera J. Angew. Chem. Int. Ed. 2000; 39: 2877
  • 4 Unpublished results from our laboratory; Zn* (1.0 equiv) reacted with 3- or 4-iodophenol (1.0 equiv), and the resulting complex was coupled with acid chlorides to give the corresponding phenyl benzoate esters instead of the expected Negishi ketone products.
  • 5 Durán-Peña MJ. Botubol-Ares JM. Hanson JR. Hernández-Galán R. Collado IG. Eur. J. Org. Chem. 2016; 3584
  • 6 Kim S.-H. Rieke RD. Tetrahedron Lett. 1999; 40: 4931
    • 7a Shinntou T. Fukumoto K. Mukaiyama T. Bull. Chem. Soc. Jpn. 2004; 77: 1569
    • 7b Lee CK. Yu JS. Lee H.-J. J. Heterocycl. Chem. 2002; 39: 1207
  • 10 Phenyl 3-Chlorobenzoate (1c); Typical Procedure A 25 mL flask was charged with lithium (0.07 g, 9.68 mmol), naphthalene (0.19 g, 1.48 mmol), anhyd MnI2 (1.45 g, 4.71 mmol), and freshly distilled THF (10 mL) under argon pressure, and the mixture was stirred for 1 h at r.t. To the resulting slurry, containing 2.5 mmol of highly active manganese, was added PhOH (0.47 g, 5.0 mmol) and the resulting mixture was stirred at r.t. for 10 min. Neat 3-chlorobenzoyl chloride (0.88 g, 5.0 mmol) was then added to the flask, and the mixture was stirred at r.t. for 30 min. The reaction was then quenched with 3 M aq HCl, and the mixture was extracted with Et2O (3 × 10 mL). The organic layers were combined and washed with sat. aq NaHCO3 (3 × 10 mL), sat. aq Na2S2O3 (3 × 10 mL), and brine (3 × 10 mL), then dried (MgSO4). Column chromatography (silica gel, 1% EtOAc–hexanes) gave a pale-yellow solid; yield: 0.96 g (83%); mp 60–63 °C. 1H NMR (500 MHz, CDCl3): δ = 8.19 (br s, 1 H), 8.10 (d, J = 8.0 Hz, 1 H), 7.64 (d, J = 8.0 Hz, 1 H), 7.50–7.45 (m, 3 H), 7.32 (t, J = 7.5 Hz, 1 H), 7.24 (d, J = 7.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 164.0, 150.7, 134.8, 133.6, 131.3, 130.2, 130.0, 129.6, 128.3, 126.2, 121.6. HRMS: m/z [M+] calcd for C13H9ClO2: 232.0291; Found: 232.0280.