Synlett 2017; 28(19): 2680-2684
DOI: 10.1055/s-0036-1590976
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Enaminones by a Palladium-Catalyzed Four-Component Carbonylative Addition Reaction

Liangguang Wang*
a   College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, P. R. of China   eMail: wang825663@163.com
,
Juan Ma
a   College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, P. R. of China   eMail: wang825663@163.com
,
Xia Chen
b   Department of Chemistry and Chemical Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China   eMail: zhouxiaoyu20062006@126.com
,
Xiaoyu Zhou*
b   Department of Chemistry and Chemical Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China   eMail: zhouxiaoyu20062006@126.com
› Institutsangaben
This work was supported by the Foundation of Science and Technology Department of Guizhou Province (qiankeheJzi [2015] number 2003) and the Doctoral Foundation of Anshun University (asubsjj201501).
Weitere Informationen

Publikationsverlauf

Received: 05. Juni 2017

Accepted after revision: 03. Juli 2017

Publikationsdatum:
08. August 2017 (online)


Abstract

A palladium-catalyzed carbonylative addition reaction of aryl bromides, amines, and alkynes has been developed. The reaction ­occurs readily in N,N-dimethylformamide with PdCl2(PPh3)2 as a catalyst to give the corresponding enaminones in medium to excellent yields. Furthermore, a mechanism for the palladium-catalyzed four-component carbonylative addition reaction is proposed.

Supporting Information

 
  • References and Notes

  • 1 van der Heijden G. Ruijter E. Orru RV. A. Synlett 2013; 24: 666
    • 2a Rotstein BH. Zaretsky S. Rai V. Yudin AK. Chem. Rev. 2014; 114: 8323
    • 2b Estévez V. Villacampa M. Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
    • 2c Slobbe P. Ruijter E. Orru RV. A. Med. Chem. Commun. 2012; 3: 1189
    • 2d Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439

      For selected reviews, see:
    • 3a Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
    • 3b Guo X. Hu W. Acc. Chem. Res. 2013; 46: 2427
    • 3c Gu Y. Green Chem. 2012; 14: 2091
    • 3d Estévez V. Villacampa M. Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 3e D’Souza DM. Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
    • 3f Dömling A. Chem. Rev. 2006; 106: 17

      For selected reviews, see:
    • 5a Dong K. Wu X.-F. Angew. Chem. Int. Ed. 2017; 56: 5399
    • 5b Wu X.-F. RSC Adv. 2016; 6: 83831
    • 5c Wu X.-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1
    • 5d Wu X.-F. Neumann H. Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 5e Liu Q. Zhang H. Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
    • 5f Brennführer A. Neumann H. Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 5g Barnard CF. J. Organometallics 2008; 27: 5402
    • 5h Modern Carbonylation Methods . Kollár L. Wiley-VCH; Weinheim: 2008

      For selected papers, see:
    • 6a Shen C. Spannenberg A. Auer M. Wu X.-F. Adv. Synth. Catal. 2017; 359: 941
    • 6b Torres GM. Quesnel JS. Bijou D. Arndtsen BA. J. Am. Chem. Soc. 2016; 138: 7315
    • 6c Zhao J. Li Z. Song S. Wang M.-A. Fu B. Zhang Z. Angew. Chem. Int. Ed. 2016; 55: 5545
    • 6d Wang Q. He Y.-T. Zhao J.-H. Qiu Y.-F. Zheng L. Hu J.-Y. Yang Y.-C. Liu X.-Y. Liang Y.-M. Org. Lett. 2016; 18: 2664
    • 6e Liu J. Han Z. Wang X. Wang Z. Ding K. J. Am. Chem. Soc. 2015; 137: 15346
    • 6f Cheng J. Qi X. Li M. Chen P. Liu G. J. Am. Chem. Soc. 2015; 137: 2480
    • 6g Sumino S. Ui T. Ryu I. Org. Lett. 2013; 15: 3142
    • 6h Fusano A. Sumino S. Fukuyama T. Ryu I. Org. Lett. 2011; 13: 2114
    • 7a Shen C. Spannenberg A. Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 5067
    • 7b He L. Li H. Neumann H. Beller M. Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 1420
  • 8 Zhang S. Wang L. Feng X. Bao M. Org. Biomol. Chem. 2014; 12: 7233

    • For selected papers and reviews, see:
    • 9a Zhu Z. Tang X. Li J. Li X. Wu W. Deng G. Jiang H. Chem. Commun. 2017; 53: 3228
    • 9b Yang Z. Jiang B. Hao W.-J. Zhou P. Tu S.-J. Li G. Chem. Commun. 2015; 51: 1267
    • 9c Shi L. Xue L. Lang R. Xia C. Li F. ChemCatChem 2014; 6: 2560
    • 9d Yu X. Wang L. Feng X. Bao M. Yamamoto Y. Chem. Commun. 2013; 49: 2885
    • 9e Cheng G. Zeng X. Shen J. Wang X. Cui X. Angew. Chem. Int. Ed. 2013; 52: 13265
    • 9f Zhao Y. Deng D.-S. Ma L.-F. Ji B.-M. Wang L.-Y. Chem. Commun. 2013; 49: 10299
    • 9g Wu X.-F. Sundararaju B. Neumann H. Dixneuf PH. Beller M. Chem. Eur. J. 2011; 17: 106
    • 9h Cacchi S. Fabrizi G. Filisti E. Org. Lett. 2008; 10: 2629
    • 9i Elassar A.-ZA. El-Khair AA. Tetrahedron 2003; 59: 8463
  • 10 Wu X.-F. Neumann H. Beller M. Chem. Eur. J. 2010; 16: 9750
  • 11 Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
  • 12 Enaminones 4a–z; General Procedure A mixture of the appropriate aryl bromide 1 (0.5 mmol), alkyne 2 (0.6 mmol), amine 3 (0.75 mmol), PdCl2(PPh3)2 (17.5 mg, 5 mol%), Et3N (209 μL, 1.5 mmol), and DMF (4.0 mL) was placed in a 25 mL autoclave under N2. The autoclave was filled with CO to 5 atm pressure, and heated to 120 °C for 20 h. The product was extracted with EtOAc (3 × 5 mL), and the organic layers were combined, washed with brine (2 × 5 mL), dried (Na2SO4), and concentrated under reduced pressure. The residue was then purified by chromatography (silica gel). 1-(4-Acetylphenyl)-3-(diethylamino)-3-phenylprop-2-en-1-one (4a) Pale-yellow solid; yield: 138.2 mg (86%,); mp 96−98 °C. IR (neat): 3474, 3059, 2976, 1683, 1625, 1479, 1461, 1439, 1357, 1265, 1213, 775 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.92 (d, J = 8.0 Hz, 2 H), 7.87 (d, J = 8.0 Hz, 2 H), 7.45–7.23 (m, 5 H), 5.93 (s, 1 H), 3.51–2.90 (m, 4 H), 2.59 (s, 3 H), 1.47–0.94 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 198.0, 185.9, 164.1, 146.2, 138.2, 137.0, 128.7, 128.5, 128.1, 127.8, 127.7, 93.1, 44.8, 26.9, 14.4. HRMS (EI): m/z [M+] calcd for C21H23NO2: 321.1729; found: 321.1735.