Synlett 2018; 29(03): 354-358
DOI: 10.1055/s-0036-1591489
letter
© Georg Thieme Verlag Stuttgart · New York

Cyclopropane Intermediates from Insertion Reactions of Platinum–Carbenes: A Route to Heterospiranes

Kiseong Kim
Department of Chemistry and Research Institute of Natural Science, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea   Email: changho@hanyang.ac.kr
,
Soyung Kim
Department of Chemistry and Research Institute of Natural Science, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea   Email: changho@hanyang.ac.kr
,
Chang Ho Oh*
Department of Chemistry and Research Institute of Natural Science, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea   Email: changho@hanyang.ac.kr
› Author Affiliations
Financial support was provided by a grant from the National Research Foundation of Korea (NRF–2014R1A5A1011165).
Further Information

Publication History

Received: 30 July 2017

Accepted after revision: 14 September 2017

Publication Date:
11 October 2017 (online)


Abstract

Heteroaromatic-anchored enynals with a pendent alkene group were successfully cyclized through a Huisgen-type [3+2] cycloaddition to give a tetracyclic Pt–carbene complex that underwent insertion into the C–H bond in the β-position to give fused cyclopropanes that are otherwise inaccessible. On heating, the cyclopropanes smoothly rearranged to form the corresponding heterospiranes with excellent levels of stereoselectivity and high yields.

Supporting Information

 
  • References and Notes

    • 1a Müller G. Berkenbosch T. Benningshof JC. J. Stumpfe D. Bajorath J. Chem. Eur. J. 2017; 23: 703
    • 1b Zheng Y. Tice CM. Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 1c Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2014; 31: 160
    • 1d Carreira EM. Fessard TC. Chem. Rev. 2014; 114: 8257
    • 2a Mihiş A. Golban LB. Raţ CI. Bogdan E. Terec A. Grosu I. Struct. Chem. 2012; 23: 61
    • 2b Terec A. Grosu I. Condamine E. Breau L. Plé G. Ramondenc Y. Rochon FD. Peulon-Agasse V. Opris D. Tetrahedron 2004; 60: 3173
    • 2c Grosu I. Bogdan E. Plé G. Toupet L. Ramondenc Y. Condamine E. Peulon-Agasse V. Balog M. Eur. J. Org. Chem. 2003; 3153
    • 2d Balog M. Grosu I. Plé G. Ramondenc Y. Toupet L. Condamine E. Lange C. Loutelier-Bourhis C. Peulon-Agasse V. Bogdan E. Tetrahedron 2004; 60: 4789
    • 2e Grosu I. Plé G. Mager S. Martinez R. Mesaros C. del Carmen Camacho B. Tetrahedron 1997; 53: 6215
    • 3a Kong K. Moussa Z. Lee C. Romo D. J. Am. Chem. Soc. 2011; 133: 19844
    • 3b Fuse S. Inaba K. Takagi M. Tanaka M. Hirokawa T. Johmoto K. Uekusa H. Shin-ya K. Takahashi T. Doi T. Eur. J. Med. Chem. 2013; 66: 180
    • 3c Smith LK. Baxendale IR. Org. Biomol. Chem. 2015; 13: 9907
    • 4a Kang F.-A. Sui Z. Tetrahedron Lett. 2011; 52: 4204
    • 4b Sannigrahi M. Tetrahedron 1999; 55: 9007
    • 5a Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 5b Hsu D.-S. Chen C.-H. Hsu C.-W. Eur. J. Org. Chem. 2016; 589
    • 5c Kotha S. Deb AC. Lahiri K. Manivannan E. Synthesis 2009; 165
    • 5d Brimble MA. Stubbing LA. Top. Heterocycl. Chem. 2014; 35: 189
    • 5e Chabaud L. Raynal Q. Barre E. Guilloua C. Adv. Synth. Catal. 2015; 357: 3880
    • 5f Mostinski Y. Lankri D. Tsvelikhovsky D. Synthesis 2017; 49: 2361
    • 7a Shin S. Gupta AK. Rhim CY. Oh CH. Chem. Commun. 2005; 4429
    • 7b Oh CH. Reddy KV. Bull. Korean Chem. Soc. 2007; 28: 1927
    • 9a Oh CH. Reddy VR. Kim A. Rhim CY. Tetrahedron Lett. 2006; 47: 5307
    • 9b Oh CH. Lee JH. Lee SJ. Kim JI. Hong CS. Angew. Chem. Int. Ed. 2008; 47: 7505
    • 9c Oh CH. Lee JH. Lee SM. Yi HJ. Hong CS. Chem. Eur. J. 2009; 15: 71
    • 9d Oh CH. Lee SM. Hong CS. Org. Lett. 2010; 12: 1308
    • 9e Oh CH. Yi HJ. Lee JH. Lim DH. Chem. Commun. 2010; 46: 3007
    • 9f Oh CH. Tak SY. Lee JH. Piao L. Bull. Korean Chem. Soc. 2011; 32: 2978
    • 9g Kim JH. Ray D. Hong CS. Han JW. Oh CH. Chem. Commun. 2013; 49: 5690
    • 9h Han JW. Lee JH. Oh CH. Synlett 2013; 24: 1433
  • 10 Heterocyclopropane 7a; Typical Procedure A new 5 mL test tube was charged with the 2-alkynylnicotinaldehyde 6a (0.40 mmol), PtCl2(PPh3)2 (11 mg, 0.04 mmol), and anhyd toluene (1.5 mL) at 0 °C under argon. The mixture was stirred for 4 h in a preheated oil bath (120 °C). When the reaction was complete (TLC), the solvent was removed under vacuum, and the crude product was purified by flash column chromatography (silica gel, hexane–EtOAc) to give a yellow oil; yield: 169 mg (94%); Rf = 0.41 (EtOAc–hexane, 1:4). IR (NaCl): 2980, 1732, 1440, 1244 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.92 (d, J = 8.0 Hz, 2 H), 7.49–7.46 (m, 2 H), 7.42 (d, J = 7.2 Hz, 1 H), 7.24 (d, J = 10.0 Hz, 1 H), 5.13 (d, J = 5.6 Hz, 1 H), 4.30–4.16 (m, 4 H), 3.12 (d, J = 15.2 Hz, 1 H), 2.45 (s, 1 H), 2.30 (d, J = 14.4 Hz, 2 H), 2.18–2.11 (m, 1 H), 1.93–1.78 (m, 3 H), 1.42 (d, J = 11.6 Hz, 1 H), 1.30 (t, J = 7.2 Hz, 3 H), 1.26 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.5, 170.8, 157.2, 154.6, 148.8, 148.7, 144.8, 144.7, 135.7, 135.6, 128.9, 128.8, 128.8, 128.5, 118.3, 118.1, 73.8, 61.9, 61.7, 61.7, 53.3, 33.7, 31.4, 30.7, 26.5, 22.8, 21.6, 14.2, 14.1. HRMS (ESI): m/z [M + Na]+ calcd for C26H26FNNaO5: 474.1688; found: 474.1691.
  • 11 Spiro(cyclohexane-1,7′-quinoline) 8a; Typical Procedure A new 5 mL test tube was charged with the 2-alkynylnicotinaldehyde 6a (0.40 mmol), PtCl2(PPh3)2 (11 mg, 0.04 mmol), and anhyd xylene (1.5 mL) at 0 °C under argon. The mixture was stirred for 1 h in a preheated oil bath (150 °C) until the reaction was complete (TLC). The solvent was removed under vacuum, and the crude product was purified by flash column chromatography (silica gel, hexane–EtOAc) to give a yellow oil; yield: 140 mg (78%); Rf  = 0.33 (EtOAc–hexane, 1:4). IR (NaCl): 2981, 1731, 1441, 1249, 1249 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 8.4 Hz, 2 H), 7.49–7.39 (m, 3 H), 7.13 (d, J = 11.2 Hz, 1 H), 6.52 (d, J = 9.2 Hz, 1 H) , 6.15 (d, J = 9.6 Hz, 1 H), 4.27–4.19 (m, 4 H), 3.36 (d, J = 16.0 Hz, 1 H), 3.10 (d, J = 16.0 Hz, 1 H), 2.92 (ABq, Δδ = 38.8 Hz, J = 15.2 Hz, 2 H), 2.44–2.28 (m, 2 H), 1.91–1.85 (m, 2 H), 1.26 (t, J = 7.2 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 207.0, 170.4, 170.1, 158.0, 155.4, 149.6, 149.5, 143.8, 143.7, 135.4, 135.4, 132.7, 132.6, 129.2, 129.1, 128.9, 128.9, 128.8, 128.8, 128.6, 127.9, 127.8, 126.3, 121.1, 120.9, 62.2, 62.2, 57.5, 50.6, 42.5, 38.4, 32.0, 26.0, 14.1. HRMS (ESI): m/z [M + Na]+calcd for C26H26FNNaO5: 474.1688; found: 474.1695.