Synlett 2018; 29(05): 658-662
DOI: 10.1055/s-0036-1591519
letter
© Georg Thieme Verlag Stuttgart · New York

Ruthenium(II)-Catalyzed C–H Alkynylation of Heterocycles under Chelation Assistance

Yanping Liu
a   College of Chemical Engineering and Food Technology, Zhengzhou Institute of Technology, Zhengzhou, Henan 450000, P. R. of China   Email: 20053002@zhzhu.edu.cn
,
Feng Chang
a   College of Chemical Engineering and Food Technology, Zhengzhou Institute of Technology, Zhengzhou, Henan 450000, P. R. of China   Email: 20053002@zhzhu.edu.cn
,
Qiaojuan Jiang
a   College of Chemical Engineering and Food Technology, Zhengzhou Institute of Technology, Zhengzhou, Henan 450000, P. R. of China   Email: 20053002@zhzhu.edu.cn
,
Zhiwei Ma
b   Department of Fundamental Courses, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450000, P. R. of China
,
Congjun Liu*
a   College of Chemical Engineering and Food Technology, Zhengzhou Institute of Technology, Zhengzhou, Henan 450000, P. R. of China   Email: 20053002@zhzhu.edu.cn
› Author Affiliations
This work was supported by Zhengzhou Institute of Technology.
Further Information

Publication History

Received: 18 October 2017

Accepted after revision: 29 October 2017

Publication Date:
11 December 2017 (online)


Abstract

An efficient ruthenium(II)-catalyzed, chelation-assisted C–H alkynylation of heterocycles is described using hypervalent iodine–alkyne as an alkynylating reagent. This reaction proceeds smoothly under mild conditions with high regioselectivity and good functional group tolerance, delivering the desired alkynylated indoles, thiophene, furan, and pyrrole in high yields.

Supporting Information

 
  • References and Notes

    • 1a Sundberg RJ. Indoles. Academic Press; San Diego, CA: 1996
    • 1b Somei M. Yamada F. Nat. Prod. Rep. 2005; 22: 73
    • 1c Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1d Alabugin IV. Gold B. J. Org. Chem. 2013; 78: 7777
    • 1e Hu R. Lam JW. Y. Tang BZ. Macromol. Chem. Phys. 2013; 214: 175
    • 1f Acetylene Chemistry: Chemistry, Biology, and Material Science. Diederich F. Stang PJ. Tykwinski RR. Wiley-VCH; Weinheim: 2005
    • 1g Chinchilla R. Nájera C. Chem. Rev. 2014; 114: 1783
    • 2a Kim T.-H. Swager TM. Angew. Chem. Int. Ed. 2003; 42: 4803
    • 2b Liu J.-Z. Lam JW. Y. Tang BZ. Chem. Rev. 2009; 109: 5799
    • 2c Nicolaou KC. Zipkin RE. Dolle RE. Harris BD. J. Am. Chem. Soc. 1984; 106: 3548
    • 2d Rakshit S. Patureau FW. Glorius F. J. Am. Chem. Soc. 2010; 132: 9585

      Representative recent reviews on C–H activation:
    • 3a Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 3b Ackermann L. Vicente R. Kapdi A. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 3c Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 3d Daugulis O. Top. Curr. Chem. 2009; 292: 57
    • 3e Ackermann L. Org. Process Res. Dev. 2015; 19: 260
    • 3f Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843
    • 3g Kuhl N. Schroeder N. Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 3h Mesganaw T. Ellman JA. Org. Process Res. Dev. 2014; 18: 1097
    • 3i Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 3j Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 3k Schipper DJ. Fagnou K. Chem. Mater. 2011; 23: 1594
    • 3l Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 3m Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 3n Segawa Y. Maekawa T. Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 3o Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 3p Shin K. Kim H. Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 3q Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308

      For selected examples of C–H alkynylation, see:
    • 4a Dudnik AS. Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2096
    • 4b He J. Wasa M. Chan KS. L. Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 3387
    • 4c Brand JP. Charpentier J. Waser J. Angew. Chem. Int. Ed. 2009; 48: 9346
    • 4d Ano Y. Tobisu M. Chatani N. J. Am. Chem. Soc. 2011; 133: 12984
    • 4e Kim SH. Park SH. Chang S. Tetrahedron 2012; 68: 5162
    • 4f Seregin IV. Ryabova V. Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 7742

      For selected examples of C–H alkynylation using a hypervalent iodine-alkyne reagent, see:
    • 5a Brand JP. Charpentier J. Waser J. Angew. Chem. Int. Ed. 2009; 48: 9346
    • 5b Tolnai GL. Ganss S. Brand JP. Waser J. Org. Lett. 2013; 15: 112
    • 5c Brand JP. Waser J. Angew. Chem. Int. Ed. 2010; 49: 7304
    • 5d Brand JP. Chevalley C. Scopelliti R. Waser J. Chem. Eur. J. 2012; 18: 5655
    • 5e Li Y. Brand JP. Waser J. Angew. Chem. Int. Ed. 2013; 52: 6743
    • 5f Wang Z. Li X. Huang Y. Angew. Chem. Int. Ed. 2013; 52: 14219
  • 6 Xie F. Qi Z. Yu S. Li X. J. Am. Chem. Soc. 2014; 136: 4780
    • 7a Feng C. Loh T.-P. Angew. Chem. Int. Ed. 2014; 53: 2722
    • 7b Feng C. Feng D. Luo Y. Loh T.-P. Org. Lett. 2014; 16: 5956
    • 7c Yang X.-F. Hu X.-H. Feng C. Loh T.-P. Chem. Commun. 2015; 51: 2532
  • 8 Collins KD. Lied F. Glorius F. Chem. Commun. 2014; 50: 4459
    • 9a Wang H. Xie F. Qi Z. Li X. Org. Lett. 2015; 17: 920
    • 9b Ai W. Wu Y. Tang H. Yang X. Yang Y. Li Y. Zhou B. Chem. Commun. 2015; 51: 7871
    • 9c Wu Y. Yang Y. Zhou B. Li Y. J. Org. Chem. 2015; 80: 1946
    • 9d Chen C. Liu P. Tang J. Deng G. Zeng X. Org. Lett. 2017; 19: 2474
    • 11a Zhang Z.-Z. Liu B. Wang C.-Y. Shi B.-F. Org. Lett. 2015; 17: 4094
    • 11b Sauermann N. Gonzalez MJ. Ackermann L. Org. Lett. 2015; 17: 5316
    • 11c Landge VG. Midya SP. Rana J. Shinde DR. Balaraman E. Org. Lett. 2016; 18: 5252
  • 14 1-(Pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (3a) – Typical Procedure 1-(Pyrimidin-2-yl)-1H-indole (1a, 0.1 mmol, 1.0 equiv), hypervalent iodine–alkyne 2a (0.12 mmol, 1.2 equiv), [Ru(cymene)Cl2]2 (5 mol %), AgSbF6 (0.02 mmol, 20 mol%), NaOAc (0.1 mmol, 1.0 equiv), and 1,2-DCE (1 mL) were charged into a pressure tube under argon. The reaction mixture was stirred for 24 h at 80 °C under Ar atmosphere, and then the mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography using EtOAc/PE to afford the alkynylation product 3a. 1H NMR (400 MHz, CDCl3): δ = 8.79 (d, J = 4.8 Hz, 2 H), 8.28 (d, J = 7.7 Hz, 1 H), 7.57 (d, J =7.7 Hz, 1 H), 7.34–7.29 (m, 1 H), 7.25–7.19 (m, 1 H), 7.17 (t, J = 4.8 Hz, 1 H), 7.08 (s, 1 H), 1.14 (s, 21 H). 13C NMR (100 MHz, CDCl3 ): δ = 158.1, 157.4, 136.2, 128.6, 124.8, 122.4, 121.0, 120.7, 117.5, 115.7, 114.1, 98.8, 97.9, 18.7, 11.4.