Synlett 2018; 29(05): 640-644
DOI: 10.1055/s-0036-1591858
letter
© Georg Thieme Verlag Stuttgart · New York

Fe(BF4)2-Catalyzed Inter- and Intramolecular Carbonyl-Ene Reaction of Trifluoropyruvate

Di Meng
Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec (Québec) G1V 0A6, Canada   eMail: Thierry.Ollevier@chm.ulaval.ca
,
Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec (Québec) G1V 0A6, Canada   eMail: Thierry.Ollevier@chm.ulaval.ca
› Institutsangaben
We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC), the Centre in Green Chemistry and Catalysis (CGCC), and Université Laval for financial support of our program.
Weitere Informationen

Publikationsverlauf

Received: 10. November 2017

Accepted after revision: 14. November 2017

Publikationsdatum:
13. Dezember 2017 (online)


Abstract

Inter- and intramolecular carbonyl-ene reactions have been developed using 5 mol% Fe(BF4)2 as catalyst, affording homoallylic alcohols in 36–87% isolated yields. This catalyst, prepared from FeCl2 and AgBF4, is the first FeII Lewis acid reported for the carbonyl-ene reaction using ethyl trifluoropyruvate. The method was successfully applied to the reaction of various 1,1-disubstituted alkenes with ethyl trifluoropyruvate and to the cyclization of citronellal.

Supporting Information

 
  • References and Notes


    • For review of carbonyl-ene reaction, see:
    • 1a Clark ML. France MB. Tetrahedron 2008; 64: 9003
    • 1b Mikami K. Shimizu M. Chem. Rev. 1992; 92: 1021
    • 1c Mikami K. Aikawa K. In Catalytic Asymmetric Synthesis . Ojima I. Thieme; Hoboken, NJ: 2010: 683
  • 2 Johnston MI. Kwass JA. Beal RB. Snider BB. J. Org. Chem. 1987; 52: 5419
  • 3 Andersen NH. Hadley SW. Kelly JD. Bacon ER. J. Org. Chem. 1985; 50: 4144
  • 4 Andersen NH. Uh HS. Wuts PG. M. Smith SE. J. Chem. Soc., Chem. Commun. 1972; 956
  • 5 Sultana S. Bondalapati S. Indukuri K. Gogoi P. Saha P. Saikia AK. Tetrahedron Lett. 2013; 54: 1576
  • 6 Terada M. Motoyama Y. Mikami K. Tetrahedron Lett. 1994; 35: 6693
    • 7a Hao J. Hatano M. Mikami K. Org. Lett. 2000; 2: 4059
    • 7b Tudor MD. Becker JJ. White PS. Gagné MR. Organometallics 2000; 19: 4367
  • 8 Evans DA. Burgey CS. Paras NA. J. Am. Chem. Soc. 1998; 120: 5824
  • 9 Mikami K. Aikawa K. Org. Lett. 2002; 4: 99
  • 10 Kezuka S. Kogami Y. Ikeno T. Yamada T. Bull. Chem. Soc. Jpn. 2003; 76: 49
    • 11a Laschat S. Grehl M. Chem. Ber. 1994; 127: 2023
    • 11b Laschat S. Fox T. Synthesis 1997; 45
    • 12a Evans DA. Tregay SW. Burgey CS. Paras NA. Vojkovsky T. J. Am. Chem. Soc. 2000; 122: 7936
    • 12b Mikami K. Terada M. In Comprehensive Asymmetric Catalysis . Vol. 3. Jacobsen EN. Pfaltz A. Yamamoto H. Chap. 3 Springer; Berlin: 1999
    • 12c Snider BB. In Comprehensive Organic Synthesis . Trost BM. Fleming I. Pergamon; Oxford, UK: 1991
  • 13 Rueping M. Bootwicha T. Kambutong S. Sugiono E. Chem. Asian. J. 2012; 7: 1195
    • 14a Mikami K. Aikawa K. Kainuma S. Kawakami Y. Saito T. Sayo N. Kumobayashi H. Tetrahedron: Asymmetry 2004; 15: 3885
    • 14b Zhao JF. Tan BH. Zhu MK. Tjan TB. W. Tec Peng L. Adv. Synth. Catal. 2010; 352: 2085
  • 15 Luo HK. Woo Y.-L. Schumann H. Jacob C. Yang H.-Y. Tan Y.-T. Adv. Synth. Catal. 2010; 352: 1356
  • 16 Wang T. Hao X.-Q. Huang JJ. Niu J.-J. Gong J.-F. Song MP. J. Org. Chem. 2013; 78: 8712
    • 17a Clarke ML. Jones CE. S. France MB. Beilstein J. Org. Chem. 2007; 3: 24
    • 17b Rueping M. Theissmann T. Kuenkel A. Koenigs RM. Angew. Chem. Int. Ed. 2008; 47: 6798
    • 17c Lv J. Zhang Q. Zhong S. Luo SZ. J. Am. Chem. Soc. 2015; 137: 15576
  • 18 Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 19a Plancq B. Ollevier T. Chem. Commun. 2012; 48: 3806
    • 19b Lafantaisie M. Plancq B. Mirabaud A. Ollevier T. ChemCatChem 2014; 6: 2244
    • 19c Jalba A. Régnier N. Ollevier T. Eur. J. Org. Chem. 2017; 1628
  • 20 Interestingly, the reaction of 2-methyl quinoline and ethyl trifluoropyruvate was reported to occur thermally using Fe(OAc)2; the trifluoropyruvate being activated by an FeII-enamide acetate species: Pi D. Jiang K. Zhou H. Sui Y. Uozumi Y. Zou K. RSC Adv. 2014; 4: 57875
    • 21a Zhao Y.-J. Li B. Tan S. Shen Z.-L. Loh T.-P. J. Am. Chem. Soc. 2010; 132: 10242
    • 21b Tymann D. Klüppel A. Hiller W. Hiersemann M. Org. Lett. 2014; 16: 4062
    • 21c Okamoto R. Takeda K. Tokuyama H. Ihara M. Toyota M. J. Org. Chem. 2013; 78: 93
    • 22a Misono M. Nojiri N. Appl. Catal. 1990; 64: 1
    • 22b Akutagawa S. In Chirality in Industry . Collins AN. Sheldrack GN. Crosby J. John Wiley; New York: 1992: 313
    • 23a Aggarwal VK. Vennal GP. Davey PN. Newman C. Tetrahedron Lett. 1998; 39: 1997
    • 23b Nakatani Y. Kawashima K. Synthesis 1978; 147
    • 23c Peidro L. Le Roux C. Laporterie A. Dubac J. J. Organomet. Chem. 1996; 521: 397
    • 23d Anderson ED. Ernat JJ. Nguyen MP. Palma AC. Mohan RS. Tetrahedron Lett. 2005; 46: 7747
  • 24 Nakatani Y. Kawashima K. Synthesis 1978; 147

    • Isolated yields are given for 5 and 6, 1H NMR spectra are in agreement with those reported by:
    • 25a Kropp PJ. Breton GW. Graig SL. Crawford SD. Durland WF. Jr. Jones JE. III. Raleigh JS. J. Org. Chem. 1995; 60: 4146
    • 25b Imachi S. Owada K. Onaka M. J. Mol. Catal. A: Chem. 2007; 272: 174
    • 25c Jacolb RG. Perin G. Loi LN. Pinno CS. Lenardão EJ. Tetrahedron Lett. 2003; 44: 3605
  • 26 Doherty S. Knight JG. Smyth CH. Harrington RW. Clegg W. J. Org. Chem. 2006; 71: 9751
  • 27 Morao I. McNamara JP. Hillier IH. J. Am. Chem. Soc. 2003; 125: 628
    • 28a Thaler WA. Franzus B. J. Org. Chem. 1964; 29: 2226
    • 28b Huisgen R. Pohl H. Chem. Ber. 1960; 93: 527
    • 28c Walling C. Thaler W. J. Am. Chem. Soc. 1961; 83: 3877
  • 29 General Procedure for the Carbonyl-Ene Reaction of Alkenes with Ethyl 3,3,3-Trifluoropyruvate FeCl2 (1.7 mg, 0.0125 mmol) and AgBF4 (5 mg, 0.025 mmol) were added into a flame-dried test tube. The test tube was placed under high vacuum and purged with argon three times. Afterwards, distilled THF (1 mL) was added, and the resulting solution was stirred for 0.3 h, then filtered under argon atmosphere through a pre-dried pipet plugged with cotton and Celite® to remove the precipitated AgCl. To the resulting solution was added 4 Å MS (50 mg), and the solution was then evaporated under reduced pressure. The test tube was then placed under high vacuum (1 Torr) for 0.3 h. Under an argon atmosphere freshly distilled CH2Cl2 (0.5 mL) was then added, and the solution stirred for 0.1 h. Then, α-methyl styrene (30 mg, 0.25 mmol) and ethyl 3,3,3-trifluoropyruvate (64 mg, 0.375 mmol) were added via syringe into the solution. The solution was then stirred for 48 h under an argon atmosphere. Then, the crude reaction mixture was directly purified by silica flash chromatography (eluent: hexane/ethyl acetate) to give pure carbonyl-ene product 3a (63 mg, 87%). Ethyl 2-Hydroxy-4-phenyl-2-(trifluoromethyl)pent-4-enoate (3a) 30 1H NMR (400 MHz, CDCl3): δ = 7.35–7.26 (m, 5 H), 5.39 (d, J = 1.3 Hz, 1 H), 5.28 (d, J = 1.3 Hz, 1 H), 4.03 (dq, J = 10.6, 7.2 Hz, 1 H), 3.76 (d, J = 0.9 Hz, 1 H), 3.64 (dq, J = 10.6, 7.2 Hz, 1 H), 3.28 (d, J = 14.0 Hz, 1 H), 3.04 (d, J = 14.0, 1.0 Hz, 1 H), 1.11 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.9, 141.0, 128.1, 127.9, 126.8, 123.4 (q, J = 286.2 Hz), 119.4, 77.09 (q, J = 28.9 Hz), 63.5, 37.0, 13.5. IR (NaCl): 3491, 2985, 1741, 1629, 1446, 1370, 1312, 1227, 1184, 1136, 1050, 911, 778, 701 cm–1.
  • 30 Luo H.-K. Woo Y.-L. Schumann H. Jacob C. Meurs MV. Yang H.-Y. Tan Y.-T. Adv. Synth. Catal. 2010; 352: 1356