Synlett 2018; 29(06): 835-839
DOI: 10.1055/s-0036-1591876
letter
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Catalyzed Oxidative Dearomatization of Indoles for the Construction of C2-Quaternary Indolin-3-ones

Xiao-Yu Zhou*
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Xia Chen*
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Liang-Guang Wang
b   College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, P. R. of China
,
Dan Yang
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Jin-Hui Li
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
› Author Affiliations
The work was supported by the Youth Science and Technology Talent Development Project in the Education Department of Guizhou ­Province (Grant No. qianjiaohe KY zi [2016] number 263) and by the Innovation Team of Liupanshui Normal University (Grant No. LPSSYKJTD201601).
Further Information

Publication History

Received: 20 October 2017

Accepted after revision: 27 November 2017

Publication Date:
15 January 2018 (online)


Abstract

A ruthenium-catalyzed oxidative dearomatization of 2-alkyl- or 2-aryl-substituted indoles has been developed. When coupled with a cascade transformation, it provides a new system for the construction of indolin-3-ones bearing a C2-quaternary functionality. The reaction occurs readily with RuCl3·3H2O as a catalyst in acetonitrile. 2-(3-Indolyl)-substituted indolin-3-ones were obtained in medium to high yields. A mechanism for the reaction is also proposed.

Supporting Information

 
  • References and Notes

    • 1a Chen I.-S. Chen H.-F. Cheng M.-J. Chang Y.-L. Teng C.-M. Tsutomu I. Chen J.-J. Tsai I.-L. J. Nat. Prod. 2001; 64: 1143
    • 1b Hibino S. Choshi T. Nat. Prod. Rep. 2001; 18: 66
    • 1c Somei M. Yamada F. Nat. Prod. Rep. 2003; 20: 216
    • 1d Kawasaki T. Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 1e O’Connor SE. Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 1f Higuchi K. Kawasaki T. Nat. Prod. Rep. 2007; 24: 843
    • 1g Teichert A. Schmidt J. Porzel A. Arnold N. Wessjohann L. J. Nat. Prod. 2008; 71: 1092
    • 1h Höfle G. Böhlendorf B. Fecker T. Sasse F. Kunze B. J. Nat. Prod. 2008; 71: 1967
    • 1i Ishikura M. Yamada K. Nat. Prod. Rep. 2009; 26: 803
    • 1j Li S.-M. Nat. Prod. Rep. 2010; 27: 57
    • 1k Ishikura M. Yamada K. Abe T. Nat. Prod. Rep. 2010; 27: 1630
    • 2a Bur SK. Padwa A. Chem. Rev. 2004; 104: 2401
    • 2b Mąkosza M. Wojciechowski K. Chem. Rev. 2004; 104: 2631
    • 2c Busto E. Gotor-Fernández V. Gotor V. Chem. Rev. 2011; 111: 3998
    • 2d Zhang H. Hu R.-B. Liu N. Li S.-X. Yang S.-D. Org. Lett. 2016; 18: 28
    • 2e Morimoto N. Morioku K. Suzuki H. Takeuchi Y. Nishina Y. Org. Lett. 2016; 18: 2020
    • 2f Petrone DA. Kondo M. Zeidan N. Lautens M. Chem. Eur. J. 2016; 22: 5684
  • 3 Altinis Kiraz CI. Emge TJ. Jimenez LS. J. Org. Chem. 2004; 69: 2200
  • 4 Desarbre E. Savelon L. Cornec O. Mérour JY. Tetrahedron 1996; 52: 2983
    • 5a Feigelson GB. Danishefsky SJ. J. Org. Chem. 1988; 53: 3391
    • 5b Gharpure SJ. Sathiyanarayanan AM. Chem. Commun. 2011; 47: 3625
    • 6a Zhang X. Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 6b Colandrea V. Rajaraman JS. Jimenez LS. Org. Lett. 2003; 5: 785
  • 7 Zhang J.-L. Che C.-M. Chem. Eur. J. 2005; 11: 3899
    • 8a Guchhait SK. Chaudhary V. Rana VA. Priyadarshani G. Kandekar S. Kashyap M. Org. Lett. 2016; 18: 1534
    • 8b Liu R.-R. Ye S.-C. Lu C.-J. Zhuang G.-L. Gao J.-R. Jia Y.-X. Angew. Chem. Int. Ed. 2015; 54: 11205
    • 8c Kong L. Wang M. Zhang F. Xu M. Li Y. Org. Lett. 2016; 18: 6124
    • 8d Yarlagadda S. Ramesh B. Reddy C. Srinivas RL. Sridhar B. Reddy BV. S. Org. Lett. 2017; 19: 170
    • 8e Liu R.-R. Wang Y.-G. Li Y.-L. Huang B.-B. Liang R.-X. Jia Y.-X. Angew. Chem. Int. Ed. 2017; 56: 7475
  • 10 Naota T. Takaya H. Murahashi S.-I. Chem. Rev. 1998; 98: 2599
    • 11a Murahashi S.-I. Oda Y. Naota T. J. Am. Chem. Soc. 1992; 114: 7913
    • 11b Murahashi S.-I. Oda Y. Komiya N. Naota T. Tetrahedron Lett. 1994; 35: 7953
    • 11c Murahashi S.-I. Naota T. Komiya N. Tetrahedron Lett. 1995; 36: 8059
    • 11d Murahashi S.-I. Komiya N. Oda Y. Kuwabara T. J. Org. Chem. 2000; 65: 9186
    • 12a Bäckvall J.-E. Chowdhury RL. Karlsson U. J. Chem. Soc., Chem. Commun. 1991; 473
    • 12b Wang GZ. Andreasson U. Bäckvall J.-E. J. Chem. Soc., Chem. Commun. 1994; 1037
    • 12c Dijksman A. Arends IW. C. E. Sheldon RA. Chem. Commun. 1999; 1591
    • 12d Dijksman A. Marino-González A. Mairata i Payaras A. Arends IW. C. E. Sheldon RA. J. Am. Chem. Soc. 2001; 123: 6826
    • 12e Csjernyik G. Éll A. Fadini L. Pugin B. Bäckvall J.-E. J. Org. Chem. 2002; 67: 1657
  • 13 Gonsalvi L. Arends IW. C. E. Sheldon RA. Chem. Commun. 2002; 202
    • 14a Stoop RM. Mezzetti A. Green Chem. 1999; 1: 39
    • 14b Stoop RM. Bachmann S. Valentini M. Mezzetti A. Organometallics 2000; 19: 4117
    • 14c Yamada T. Hashimoto K. Kitaichi Y. Suzuki K. Ikeno T. Chem. Lett. 2001; 268
  • 15 Yang D. Zhang C. J. Org. Chem. 2001; 66: 4814
  • 16 Murahashi S.-I. Naota T. Taki H. J. Chem. Soc., Chem. Commun. 1985; 613
    • 17a Murahashi S.-I. Naota T. Miyaguchi N. Noda S. J. Am. Chem. Soc. 1996; 118: 2509
    • 17b Ratnikov MO. Farkas LE. McLaughlin EC. Chiou G. Choi H. El-Khalafy SH. Doyle MP. J. Org. Chem. 2011; 76: 2585
    • 17c Murahashi S.-I. Miyaguchi N. Noda S. Naota T. Fujii A. Inubushi Y. Komiya N. Eur. J. Org. Chem. 2011; 5355
    • 18a Shing TK. M. Tai VW.-F. Tam EK. W. Angew. Chem. Int. Ed. Engl. 1994; 33: 2312
    • 18b Balavoine G. Eskénazi C. Meunier F. Rivière H. Tetrahedron Lett. 1984; 25: 3187
    • 18c Eskénazi C. Balavoine G. Meunier F. Rivière H. J. Chem. Soc. Chem. Commun. 1985; 1111
    • 19a Torii S. Inokuchi T. Yukawa T. Chem. Lett. 1984; 1063
    • 19b Tanaka K. Yoshifuji S. Nitta Y. Chem. Pharm. Bull. 1986; 34: 3879
  • 20 Carlsen PH. J. Katsuki T. Martin VS. Sharpless KB. J. Org. Chem. 1981; 46: 3936
  • 21 Ruthenium-Catalyzed Oxidative Dearomatization of Indoles 1; General Procedure A mixture of indole 1 (0.50 mmol), NaIO4 (107 mg, 0.50 mmol, 1.0 equiv), and RuCl3·3H2O (6.5 mg, 0.025 mmol, 5.0 mol%) in MeCN (3 mL) was added to a 25 mL Schlenk flask at r.t. and the mixture was then stirred at 70 °C until the reaction was complete. Then the solvent was evaporated under reduced pressure, and the residue was purified by column chromatography [silica gel, PE–EtOAc (10:1 to 5:1)]. 2,2′-Diphenyl-1,2-dihydro-1′H,3H-2,3′-biindol-3-one (2a) Yellow solid; yield: 97.0 mg (97%); mp 220–223 °C. IR (neat): 3058, 3025, 2910, 1696, 1618, 1470, 1439, 1074, 1026, 919, 742 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 11.34 (s, 1 H), 8.33 (s, 1 H), 7.51 (dd, J = 8.3, 7.1 Hz, 1 H), 7.39–7.33 (m, 3 H), 7.25 (d, J = 7.7 Hz, 1 H), 7.16–7.11 (m, 3 H), 7.06–7.01 (m, 6 H), 6.98 (d, J = 8.3 Hz, 1 H), 6.78–6.69 (m, 2 H), 6.61 (d, J = 8.0 Hz, 1 H). 13C NMR (126 MHz, DMSO-d 6): δ = 200.5, 160.1, 139.8, 138.0, 137.5, 135.8, 133.2, 129.5, 127.6, 127.4, 127.0, 124.4, 121.2, 120.3, 118.7, 118.5, 117.5, 111.9, 111.3, 111.0, 71.2. HRMS (ESI): m/z [M + Na]+ Calcd for C28H20N2NaO: 423.1473; found: 423.1477.