Synlett 2018; 29(08): 1087-1091
DOI: 10.1055/s-0036-1591898
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Microwave-Assisted Propylphosphonic Anhydride (T3P®)-Mediated One-Pot Chromone Synthesis via Enaminones

C. Balakrishna
a   Chemistry Services, GVK Biosciences Pvt. Ltd., Survey Nos:125 (part) & 126, IDA Mallapur, Hyderabad-500076, Telangana, India   Email: Manoranjan.behera@gvkbio.com
b   Department of Chemistry, GITAM University, Visakhapatnam, Rushikonda, Andhrapradesh State, 530045, India
,
Venu Kandula
a   Chemistry Services, GVK Biosciences Pvt. Ltd., Survey Nos:125 (part) & 126, IDA Mallapur, Hyderabad-500076, Telangana, India   Email: Manoranjan.behera@gvkbio.com
,
Ramakrishna Gudipati
a   Chemistry Services, GVK Biosciences Pvt. Ltd., Survey Nos:125 (part) & 126, IDA Mallapur, Hyderabad-500076, Telangana, India   Email: Manoranjan.behera@gvkbio.com
,
Satyanarayana Yennam
a   Chemistry Services, GVK Biosciences Pvt. Ltd., Survey Nos:125 (part) & 126, IDA Mallapur, Hyderabad-500076, Telangana, India   Email: Manoranjan.behera@gvkbio.com
,
P. Uma Devi
b   Department of Chemistry, GITAM University, Visakhapatnam, Rushikonda, Andhrapradesh State, 530045, India
,
Manoranjan Behera*
a   Chemistry Services, GVK Biosciences Pvt. Ltd., Survey Nos:125 (part) & 126, IDA Mallapur, Hyderabad-500076, Telangana, India   Email: Manoranjan.behera@gvkbio.com
› Author Affiliations
We are grateful to GVK Biosciences Pvt. Ltd., for financial support and encouragement.
Further Information

Publication History

Received: 16 November 2017

Accepted after revision: 26 December 2017

Publication Date:
29 January 2018 (online)


Abstract

An efficient synthesis of 4H-chromene-4-ones via enamino ketones, with cyclization by using T3P® under microwave heating is described. This is the first report for the synthesis of chromones by using T3P®. Significant features of this method include short reaction times and high-purity products.

Supporting Information

 
  • References

    • 1a Wissmann H. Kleiner HJ. Angew. Chem. Int. Ed. Engl. 1980; 19: 133
    • 1b Escher R. Bünning P. Angew. Chem. Int. Ed. Engl. 1986; 25: 277
  • 2 Llanes García AL. Synlett 2007; 1328
  • 3 Waghmare AA. Hindupur RM. Pati HN. Rev. J. Chem. 2014; 4: 53
    • 4a Desroses M. Wieckowski K. Stevens M. Odell LR. Tetrahedron Lett. 2011; 52: 4417
    • 4b Augustine JK. Atta AN. Ramappa BK. Boodappa C. Synlett 2009; 3378
    • 4c Ragghavendra GM. Ramesha AB. Revanna CN. Nandeesh KN. Mantelingu K. Rangappa KS. Tetrahedron Lett. 2011; 52: 5571
    • 4d Wen X. El Bakali J. Deprez-Poulain B. Deprez B. Tetrahedron Lett. 2012; 53: 2440
    • 4e Poojari S. Parameswar Naik P. Krishnamurthi G. Tetrahedron Lett. 2012; 53: 4639
    • 4f Jida M. Deprez B. New J. Chem. 2012; 36: 869
  • 5 Desroses M. Jacques-Cordonnier MC. Llona-Minguez S. Jacques S. Koolmeister T. Helleday T. Scobie M. Eur. J. Org. Chem. 2013; 5879
  • 6 Reis J. Gaspar A. Milhazes N. Borges M. J. Med. Chem. 2017; 60: 7941
  • 7 Leahy JJ. J. Golding BT. Griffin RJ. Hardcastle IR. Richardson C. Rigoreau L. Smith GC. M. Bioorg. Med. Chem. Lett. 2004; 14: 6083
  • 8 Griffin RJ. Fontana G. Golding BT. Guiard S. Hardcastle IR. Leahy JJ. J. Martin N. Richardson L. Rigoreau M. Stockley GC. M. Smith C. J. Med. Chem. 2005; 48: 569
  • 9 Kim HP. Son KH. Chang HW. Kang SS. J. Pharmacol. Sci. (Tokyo, Jpn.) 2004; 14: 6083 10.1254/jphs.CRJ04003X
  • 10 Bhat AS. Whetstone JL. Brueggemeier RW. Tetrahedron Lett. 1999; 40: 2469
    • 11a Benett CJ. Caldwell ST. McPhail DB. Morrice PC. Duthie GG. Hartley RC. Bioorg. Med. Chem. 2004; 12: 2079
    • 11b Krishnamachari V. Levin LH. Zhou C. Paré PW. Chem. Res. Toxicol. 2004; 17: 795
  • 12 Marder M. Viola H. Bacigaluppo JA. Colombo MI. Wasowski C. Wolfman C. Medina JH. Rúveda EA. Paladini AC. Biochem. Biophys. Res. Commun. 1998; 249: 481
  • 13 Hoult JR. S. Moroney MA. Payá M. Methods Enzymol. 1994; 234: 443
  • 14 Parmar VS. Bracke ME. Philippe J. Wengel J. Jain SC. Olsen CE. Bisht KS. Sharma NK. Courtens A. Sharma SK. Vennekens K. Van Marck V. Singh SK. Kumar N. Kumar A. Malhothra S. Kumar R. Rajwanshi VK. Jain R. Mareel MM. Bioorg. Med. Chem. 1997; 5: 1609
  • 15 Galietta LJ. Springsteel MF. Eda M. Neidzinsk EJ. By K. Haddadin MJ. Nantz MH. Verkman AS. J. Biol. Chem. 2001; 276: 19723
    • 16a Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 16b Gaspar A. Matos JM. Garrideo J. Uriarte E. Borges F. Chem. Rev. 2014; 114: 4960
  • 17 Rangappa SK. Srinivasa B. Pai RK. Balakrishna RG. Eur. J. Med. Chem. 2014; 78: 340
  • 18 Li N.-G. Shi Z.-H. Tang Y.-P. Ma H.-Y. Yang J.-P. Li B.-Q. Wang Z.-J. Song S.-L. Duan J.-A. J. Heterocycl. Chem. 2010; 47: 785
    • 19a Elassar A.-ZA. Ei-Khair AA. Tetrahedron 2003; 59: 8463
    • 19b Riyadh SM. Abdelhamid IA. Al-Matar HM. Hilmy NM. Elnagdi MH. Heterocycles 2008; 75: 1849
    • 20a Gammill RB. Synthesis 1979; 901
    • 20b Biegasiewicz KF. St Denis JD. Carrol VM. Priefer R. Tetrahedron Lett. 2010; 51: 4408
    • 20c Ravi Kumar P. Balakrishna C. Murali B. Gudipati R. Hota PK. Chaudhary AB. Jaya Shree A. Yennam S. Behera M. J. Chem. Sci. 2016; 128: 441
  • 21 Joussot J. Schoenfelder A. Larquetoux L. Nicolas M. Suffet J. Blond G. Synthesis 2016; 48: 3364
  • 22 Lin Y.-F. Fong C. Peng W.-L. Tang K.-C. Liang Y.-E. Li W.-T. J. Org. Chem. 2017; 82: 10855
    • 23a Föhlisch B. Chem. Ber. 1971; 104: 348
    • 23b Pleier A.-K. Glas H. Grosche M. Sirsch P. Thiel WR. Synthesis 2001; 55
    • 23c Khoobi M. Alipour M. Zarei S. Jafarpour F. Shafiee A. Chem. Commun. 2012; 48: 2985
  • 24 Iaroshenko VO. Mkrtchyan S. Gevorgyan A. Miliutina M. Villinger A. Volochnyuk D. Sosnovskikh VY. Langer P. Org. Biomol. Chem. 2012; 10: 890
  • 25 Engelhart CA. Aldrich CC. J. Org. Chem. 2013; 78: 7470
    • 26a Ravi Kumar P. Behera M. Raghavulu K. Jaya Shree A. Satyanarayana Y. Tetrahedron Lett. 2012; 53: 4108
    • 26b Ravi Kumar P. Behera M. Sambaiah M. Venu K. Nagaraju P. Jaya Shree A. Satyanarayana Y. J. Amino Acids 2014; 721291
    • 26c Balakrishna C. Nagaraju P. Satyanarayana Y. Uma Devi P. Behera M. Bioorg. Med. Chem. Lett. 2015; 25: 4753
    • 26d Sambaiah M. Raghavulu K. Shiva Kumar K. Satyanarayana Y. Behera M. New J. Chem. 2017; 41: 10020
    • 26e Kandula V. Gudipati R. Chatterjee A. Kaliyaperumala M. Yennam S. Behera M. J. Chem. Sci. 2017; 129: 1233
    • 27a Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
    • 27b Dai W.-M. Shi J. Comb. Chem. High Throughput Screening 2007; 10: 837
    • 27c Kappe CO. Dallinger D. Mol. Diversity 2009; 13: 71
  • 28 6-(1,3-Benzodioxol-5-yl)-4H-chromen-4-one (3t); Typical Procedure A mixture of acetophenone derivative 1t (100 mg, 0.39 mmol) and (MeO)2CHNMe2 (0.051 mL, 0.39 mmol) was introduced into a 2–5 mL pressure-resistant vial, and the mixture was subjected to microwave irradiation for 10 min at 100 °C. The mixture was then cooled to RT, a 50% solution of T3P® in EtOAc (0.25 mL, 0.39 mmol) was added, and the mixture was irradiated for a further 10 min at 90 °C until the reaction was complete (TLC; 30% EtOAc–PE). The crude mixture was diluted with EtOAc (10 mL) and washed with H2O (5 mL) and brine (4 mL), then dried (­Na2SO4). After filtration and removal of the solvent, the crude product was purified by column chromatography (silica gel, EtOAc–hexane) to give a white solid; yield: 83 mg (80%); mp 177–179 °C. FTIR (KBr): 3072, 1645, 1463, 1305, 1224, 1120, 1024, 921, 821 cm−1. 1H NMR (400 MHz, CDCl3): δ = 8.33 (d, J = 2.4 Hz, 1 H), 7.87–7.81 (m, 2 H), 7.50 (d, J = 8.2 Hz, 1 H), 7.13–7.12 (m, 2 H), 6.91 (d, J = 8.8 Hz, 1 H), 6.37 (d, J = 6 Hz, 1 H), 6.01 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 177.6, 155.6, 155.2, 148.3, 147.5, 138.1, 133.5, 132.3, 124.9, 123.1, 120.8, 118.6, 112.9, 108.7, 107.6, 101.3. MS (EI): m/z (%) = 267 [M + 1]+ (100). HRMS (ESI): m/z [M + H]+ calcd for C16H10O4: 267.0654; found: 267.0657.
    • 29a Xiang H. Zhao Q. Tang Z. Xiao J. Xia P. Wang C. Yang C. Chen C. Yang H. Org. Lett. 2017; 19: 146
    • 29b Hardcastle IR. Cockcroft X. Curtin NJ. Desage El-Murr M. Leahy JJ. J. Stockley M. Golding BT. Rigoreau L. Richardson C. Smith GC. M. Griffin RJ. J. Med. Chem. 2005; 48: 7829