Synlett 2018; 29(07): 904-907
DOI: 10.1055/s-0036-1591902
letter
© Georg Thieme Verlag Stuttgart · New York

Glycosylated α-Azido Amino Acids: Versatile Intermediates in the Synthesis of Neoglycoconjugates

a   Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland   Email: trinidad.velascotorrijos@mu.ie
b   NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
,
a   Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland   Email: trinidad.velascotorrijos@mu.ie
› Author Affiliations
The authors want to thank the Irish Research Council (IRC-IRCSET) for the award of a Postgraduate Scholarship to Róisín O’Flaherty.
Further Information

Publication History

Received: 05 November 2017

Accepted after revision: 21 December 2017

Publication Date:
06 February 2018 (online)


Abstract

A series of glycosylated α-azido amino acids was synthesized as precursors for neoglycoconjugates, a class of important biomolecules for drug discovery, and sensor development. The synthetically challenging 1,2-cis α-galactosylated species described herein were designed as building blocks in the synthesis of analogues of α-galactosyl ceramide, a potent immunomodulator. A benzyl-protected 1,2,3-triazolyl α-galactosyl-l-serine derivative was prepared using copper azide alkyne cycloaddition to showcase the potential of glycosylated α-azido amino acids in neoglycoconjugate design.

Supporting Information

 
  • References and Notes

  • 1 Meldal M. Tornøe CW. Chem. Rev. 2008; 108: 2952
  • 2 Maruani A. Richards DA. Chudasama V. Org. Biomol. Chem. 2016; 14: 6165
  • 3 Tang W. Becker ML. Chem. Soc. Rev. 2014; 43: 7013
  • 4 Hein JE. Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 5a Tiwari VK. Mishra BB. Mishra KB. Mishra N. Singh AS. Chen X. Chem. Rev. 2016; 116: 3086
    • 5b McKay CS. Finn MG. Chem. Biol. 2014; 21: 1075
  • 6 Leyden R. Murphy P. Synlett 2009; 1949
  • 7 Campo VL. Marchiori MF. Rodrigues LC. Dias-Baruffi M. Glycoconjugate J. 2016; 33: 853
  • 8 He XP. Zeng YL. Zang Y. Li J. Field RA. Chen GR. Carbohydr. Res. 2016; 429: 1
  • 9 Lim D. Brimble MA. Kowalczyk R. Watson AJ. A. Fairbanks AJ. Angew. Chem. Int. Ed. 2014; 53: 11907
  • 10 Gunther KU. Ziegler T. Synthesis 2014; 46: 2362
  • 11 Herzner H. Reipen T. Schultz M. Kunz H. Chem. Rev. 2000; 100: 4495
  • 12 Brocke C. Kunz H. Bioorg. Med. Chem. 2002; 10: 3085
  • 13 Hojo H. Nakahara Y. Curr. Protein Pept. Sci. 2000; 1: 23
  • 14 Halkes KM. St Hilaire PM. Jansson AM. Gotfredsen CH. Meldal M. J. Chem. Soc., Perkin Trans. 1 2000; 2127
  • 15 Manabe S. Sakamoto K. Nakahara Y. Sisido M. Hohsaka T. Ito Y. Bioorg. Med. Chem. 2002; 10: 573
  • 16 Baker A. Turner NJ. Webberley MC. Tetrahedron: Asymmetry 1994; 5: 2517
  • 17 Polakova M. Pitt N. Tosin M. Murphy PV. Angew. Chem. Int. Ed. 2004; 43: 2518
  • 18 Carreno LJ. Kharkwal SS. Porcelli SA. Immunotherapy 2014; 6: 309
  • 19 Marzabadi CH. Franck RW. Chem. Eur. J. 2016; 22: 1
  • 20 Laurent X. Bertin B. Renault N. Farce A. Speca S. Milhomme O. Millet R. Desreumaux P. Hénon E. Chavatte P. J. Med. Chem. 2014; 57: 5489
  • 21 Anderson B. Teyton L. Bendelac A. Savage P. Molecules 2013; 18: 15662
  • 22 Lee T. Cho M. Ko SY. Youn HJ. Baek DJ. Cho WJ. Kang CY. Kim S. J. Med. Chem. 2007; 50: 585
  • 23 Verma YK. Reddy BS. Pawar MS. Bhunia D. Sampath Kumar HM. ACS Med. Chem. Lett. 2016; 7: 172
  • 24 Jervis PJ. Graham LM. Foster EL. Cox LR. Porcelli SA. Besra GS. Bioorg. Med. Chem. Lett. 2012; 22: 4348
  • 25 Ramanathan SK. Keeler J. Lee HL. Reddy DS. Lushington G. Aubé J. Org. Lett. 2005; 7: 1059
  • 26 Sowinski JA. Toogood PL. J. Org. Chem. 1996; 61: 7671
  • 27 Zaloom J. Roberts DC. J. Org. Chem. 1981; 46: 5173
  • 28 Nyffeler PT. Liang CH. Koeller KM. Wong CH. J. Am. Chem. Soc. 2002; 124: 10773
  • 29 Goddard-Borger ED. Stick RV. Org. Lett. 2007; 9: 3797
  • 30 Antoon JW. Liu J. Gestaut MM. Burow ME. Beckman BS. Foroozesh M. J. Med. Chem. 2009; 52: 5748
  • 31 Marine JE. Liang X. Song S. Rudick JG. J. Pept. Sci. 2015; 104: 419
  • 32 Garegg J. Hultberg H. Lindberg C. Carbohydr. Res. 1980; 83: 157
  • 33 Li ZT. Zhu LS. Kalikanda J. Tetrahedron Lett. 2011; 52: 5629
  • 34 Manabe S. Ueki A. Ito Y. Tetrahedron Lett. 2008; 49: 5159
  • 35 Weissman SA. Zewge D. Tetrahedron 2005; 61: 7833
  • 36 Representative Procedure for Glycosylation of α-Azido Amino Acid Derivatives NIS (276 mg, 1.23 mmol) was added to a solution of thiophenyl-2,3,4,6-tetra-O-benzyl-β-d-galactopyranoside (4, 388 mg, 0.61 mmol) and α-azido-l -serine tetradecyl amide (3c, 200 mg, 0.61 mmol) in anhydrous THF (6 mL) in the dark under N2and at rt. TfOH (2 μL) was added, and the reaction mixture was stirred for 20 h. MeOH was added, and the solvent was removed in the rotary evaporator. The residue was diluted with CH2Cl2 (20 mL) and washed with 1 M aq Na2S2O4 (20 mL) followed by brine (20 mL). The organic layer was dried (Na2SO4), filtered, and concentrated to give a brown solid (α/β anomeric ratio of 2.7:1 was estimated from integration of 1H NMR spectrum signals). The crude product was purified by flash column chromatography (PE to PE/EtOAc 5:1). Fractions containing glycosylated products / were recovered in a combined yield of 328 mg, 63%. The α-anomer product could be isolated as a white solid (81 mg, 35%): Rf = 0.13 (PE/EtOAc/toluene = 3:1:6); [α]D 25 +34.3 (c, 0.35 in CH2Cl2). IR (NaCl plate, CH2Cl2): νmax = 3350.5, 2924.3, 2858.2, 2108.2, 1726.4, 1452.2, 1261.4 cm–1. 1H NMR (300 MHz): δ = 0.87 (t, J = 7.3 Hz, 3 H, CH3), 1.25 (br s, 20 H, (CH 2)10CH3), 1.37–1.44 (m, 2 H, NHCH2 CH2(CH2)10CH3), 2.95–3.07 (m, 1 H, NHCH), 3.16–3.23 (m, 1 H, NHCH), 3.52–3.54 (m,2 H, H-6, H-6′), 3.68–3.76 (m, 1 H, H-β′), 3.90–3.96 (m, 3 H, H-3, H-4, H-5), 4.04–4.13 (m, 3 H, H-α, H-β, H-2), 4.38–4.95 (m, 8 H, CH2Ph × 4), 4.87 (d, J = 3.1 Hz, 1 H, H-1), 6.59 (t, J = 5.0 Hz, 1 H, NH), 7.26–7.36 (m, 20 H, aromatics). 13C NMR (75 MHz): δ = 14.1 (CH3), 26.9, 29.3, 29.40, 29.45, 29.5, 29.63, 29.67, 29.7, 31.9 (NHCH2(CH2)12CH3), 39.5 (NHCH2(CH2)12CH3), 63.0 (C-α), 68.8 (C-6), 69.1 (C-β), 70.0 (C-4 or C-5), 73.1, 73.5, 74.7, 74.8, (CH2Ph × 4), 74.9 (C-4 or C-5), 75.1 (C-2), 78.8 (C-3), 98.9 (C-1), 127.3, 127.4, 127.5, 127.6, 127.74, 127.76, 127.8, 127.9, 128.0, 128.23, 128.26, 128.32, 128.39, 128.4, 137.9, 138.4, 138.5, 138.6 (aromatics), 166.9 (CO). HRMS (ESI+): m/z calcd for C51H68N4O7H [M + H]+: 849.519; found: 849.5161.
  • 37 Mishra A. Tiwari VK. J. Org. Chem. 2015; 80: 4869
  • 38 Thirumurugan P. Matosiuk D. Jozwiak K. Chem. Rev. 2013; 113: 4905
  • 39 Xie J. Bogliotti N. Chem. Rev. 2014; 114: 7678
  • 40 Pietrzik N. Schmollinger D. Ziegler T. Beilstein J. Org. Chem. 2008; 4: 30
    • 41a Campo VL. Carvalho I. Da Silva CH. T. P. Schenkman S. Hill L. Nepogodiev SA. Field RA. Chem. Sci. 2010; 1: 507
    • 41b Campo VL. Ivanova IM. Carvalho I. Lopes CD. Carneiro ZA. Saalbach G. Schenkman S. da Silva JS. Nepogodiev SA. Field RA. Tetrahedron 2015; 71: 7344