Synlett 2018; 29(07): 969-973
DOI: 10.1055/s-0036-1591904
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Oxidation of Indoles to Isatins by tert-Butyl Hydroperoxide

Junfei Luo*
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: luojunfei@nbu.edu.cn
,
Shanshan Gao
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: luojunfei@nbu.edu.cn
,
Yaorui Ma
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: luojunfei@nbu.edu.cn
,
Guoping Ge
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: luojunfei@nbu.edu.cn
› Author Affiliations
This research is sponsored by the research funds of Ningbo University (No. ZX2016000748) and by the K. C. Wong Magna Fund of Ningbo University.
Further Information

Publication History

Received: 30 November 2017

Accepted after revision: 02 January 2018

Publication Date:
31 January 2018 (online)


Abstract

The combination of a Pd catalyst and tert-butyl hydro­peroxide (TBHP) is a powerful catalytic system for many types of oxidative transformations. Here, we report that a Pd/TBHP system facilitates the oxidation of indoles with a range of functionalities to give the corresponding isatin derivatives in good yields.

Supporting Information

 
  • References and Notes

    • 1a Grushin VV. Organometallics 2001; 20: 3950
    • 1b Lee JM. Ahn D.-S. Jung DY. Lee J. Do Y. Kim SK. Chang S. J. Am. Chem. Soc. 2006; 128: 12954
    • 1c Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 1d Krishnan S. Bagdanoff JT. Ebner D. Ramtohul YK. Tambar UK. Stoltz BM. J. Am. Chem. Soc. 2008; 130: 13745
    • 1e Muzart J. J. Mol. Catal. A: Chem. 2011; 338: 7
    • 1f Campbell AN. Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 2a Bjørsvik H.-R. Liguori L. Minisci F. Org. Process Res. Dev. 2000; 4: 534
    • 2b Curci R. D’Accolti L. Fusco C. Acc. Chem. Res. 2006; 39: 1
    • 2c Hirai Y. Kojima T. Mizutani Y. Shiota Y. Yoshizawa K. Fukuzumi S. Angew. Chem. Int. Ed. 2008; 47: 5772
    • 3a Smidt J. Hafner W. Jira R. Sieber R. Sedlmeier S. Sabel A. Angew. Chem. Int. Ed. Engl. 1962; 1: 80
    • 3b Clement WH. Selwitz CM. J. Org. Chem. 1964; 29: 241
    • 3c Tsuji J. Synthesis 1984; 369
    • 3d Tsuji J. In Comprehensive Organic Synthesis . vol. 7, Chap. 3.4. Trost BM. Fleming I. Pergamon; Oxford: 1991: 449
    • 4a Cornell CN. Sigman MS. J. Am. Chem. Soc. 2005; 127: 2796
    • 4b Michel BW. Camelio AM. Cornell CN. Sigman MS. J. Am. Chem. Soc. 2009; 131: 6076
    • 4c Michel BW. McCombs JR. Winkler A. Sigman MS. Angew. Chem. Int. Ed. 2010; 49: 7312
    • 4d Michel BW. Steffens LD. Sigman MS. J. Am. Chem. Soc. 2011; 133: 8317
    • 4e McCombs JR. Michel BW. Sigman MS. J. Org. Chem. 2011; 76: 3609
    • 4f DeLuca RJ. Edwards JL. Steffens LD. Michel BW. Qiao X. Zhu C. Cook SP. Sigman MS. J. Org. Chem. 2013; 78: 1682
  • 5 Zhao J.-W. Liu L. Xiang SJ. Liu Q. Chen H.-J. Org. Biomol. Chem. 2015; 13: 5613
  • 6 Dong J. Liu P. Sun P. J. Org. Chem. 2015; 80: 2925
  • 7 Wu X.-F. Chem. Eur. J. 2015; 21: 12252
    • 8a Jia X. Zhang S. Wang W. Luo F. Cheng J. Org. Lett. 2009; 11: 3120
    • 8b Chan C.-W. Zhou Z. Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999
    • 8c Wu Y. Li B. Mao F. Li X. Kwong FY. Org. Lett. 2011; 13: 3258
    • 8d Li C. Wang L. Li P. Zhou W. Chem. Eur. J. 2011; 17: 10208
    • 8e Shin Y. Sharma S. Mishra NK. Han S. Park J. Oh H. Ha J. Yoo H. Jung YH. Kim IS. Adv. Synth. Catal. 2015; 357: 594
    • 8f Szabo F. Daru J. Simkó D. Nagy TZ. Stirling A. Novak Z. Adv. Synth. Catal. 2013; 355: 685
    • 8g Szabo F. Simkó D. Novak Z. RSC Adv. 2014; 4: 3883
    • 8h Zhang Q. Li C. Yang F. Li J. Wu Y. Tetrahedron 2013; 69: 320
    • 8i Banerjee A. Santra SK. Guin S. Rout SK. Patel BK. Eur. J. Org. Chem. 2013; 1367
    • 8j Sharma S. Park J. Park E. Kim A. Kim M. Kwak JH. Jung YH. Kim IS. Adv. Synth. Catal. 2013; 355: 332
    • 8k Banerjee A. Bera A. Santra SK. Guin S. Patel BK. RSC Adv. 2014; 4: 8558
    • 8l Sun M. Hou L.-K. Chen X.-X. Yang X.-J. Sun W. Zang Y.-S. Adv. Synth. Catal. 2014; 356: 3789
    • 8m Yi M. Cui X. Zhu C. Pi C. Zhu W. Wu Y. Asian J. Org. Chem. 2015; 4: 38
    • 8n Li H. Li P. Wang L. Org. Lett. 2013; 15: 620
    • 8o Chan C.-W. Zhou Z. Chan AS. C. Yu W.-Y. Org. Lett. 2010; 12: 3926
    • 8p Kianmehr E. Kazemi S. Foroumadi A. Tetrahedron 2014; 70: 349
    • 8q Yan X.-B. Shen Y.-W. Chen D.-Q. Gao P. Li Y.-X. Song X.-R. Liu X.-Y. Liang Y.-M. Tetrahedron 2014; 70: 7490
    • 8r Kumar G. Sekar G. RSC Adv. 2015; 5: 28292
    • 8s Wang W. Liu J. Gui Q. Tan Z. Synlett 2015; 26: 931
    • 8t Zhao J. Fang H. Xie C. Han J. Pan G. Li Y. Asian J. Org. Chem. 2013; 2: 1044
    • 8u Chu J.-H. Chen S.-T. Chiang M.-F. Wu M.-J. Organometallics 2015; 34: 953
    • 8v Yu Q. Zhang N. Huang J. Lu S. Zhu Y. Yu X. Zhao K. Chem. Eur. J. 2013; 19: 11184
    • 8w Zhang N. Yu Q. Chen R. Huang J. Xia Y. Zhao K. Chem. Commun. 2013; 49: 9464
    • 8x Duan P. Yang Y. Ben R. Yan Y. Dai L. Hong M. Wu Y.-D. Wang D. Zhang X. Zhao J. Chem. Sci. 2014; 5: 1574
    • 9a Xiao F. Shuai Q. Zhao F. Basle O. Deng G. Li C.-J. Org. Lett. 2011; 13: 1614
    • 9b Kishore R. Kantam ML. Yadav J. Sudhakar M. Laha S. Venugopal A. J. Mol. Catal. A: Chem. 2013; 379: 213
    • 9c Yuan Y. Chen D. Wang X. Adv. Synth. Catal. 2011; 353: 3373
    • 9d Luo F. Yang J. Li Z. Xiang H. Zhou X. Eur. J. Org. Chem. 2015; 2463
    • 9e Zhang Q. Yang F. Wu Y. Tetra­hedron 2013; 69: 4908
    • 9f Ding Q. Ji H. Ye C. Wang J. Wang J. Zhou L. Peng Y. Tetrahedron 2013; 69: 8661
    • 9g Park J. Kim A. Sharma S. Kim M. Park E. Jeon Y. Lee Y. Kwak JH. Jung YH. Kim IS. Org. Biomol. Chem. 2013; 11: 2766
    • 9h Kim M. Sharma S. Park J. Kim M. Choi Y. Jeon Y. Kwak JH. Kim IS. Tetrahedron 2013; 69: 6552
    • 9i Sharma S. Kim M. Park J. Kim M. Kwak JH. Jung YH. Oh JS. Lee Y. Kim IS. Eur. J. Org. Chem. 2013; 6656
    • 9j Hou L. Chen X. Li S. Cai S. Zhao Y. Sun M. Yang XJ. Org. Biomol. Chem. 2015; 13: 4160
    • 9k Tang H. Qian C. Lin D. Jiang H. Zeng W. Adv. Synth. Catal. 2014; 356: 519
    • 10a Guin S. Rout SK. Banerjee A. Nandi S. Patel BK. Org. Lett. 2012; 14: 5294
    • 10b Zheng Y. Song WB. Zhang SW. Xuan LJ. Tetrahedron 2015; 71: 1574
    • 10c Yin Z. Sun P. J. Org. Chem. 2012; 77: 11339
    • 10d Wu Y. Choy PY. Mao F. Kwong FY. Chem. Commun. 2013; 49: 689
    • 10e Weng J. Yu Z. Liu X. Zhang G. Tetrahedron Lett. 2013; 54: 1205
    • 10f Xiong F. Qian C. Lin D. Zeng W. Lu X. Org. Lett. 2013; 15: 5444
    • 10g Song H. Chen D. Pi C. Cui X. Wu Y. J. Org. Chem. 2014; 79: 2955
    • 10h Wu Y. Feng L.-J. Lu X. Kwong FY. Luo H.-B. Chem. Commun. 2014; 50: 15352
    • 11a Zhou W. Li H. Wang L. Org. Lett. 2012; 14: 4594
    • 11b Cui C. Pi X. Liu X. Guo M. Zhang H. Wu Y. Org. Lett. 2014; 16: 5164
    • 11c Li C. Zhu W. Shu S. Wu X. Liu H. Eur. J. Org. Chem. 2015; 3743
    • 12a Khemnar AB. Bhanage BM. Eur. J. Org. Chem. 2014; 6746
    • 12b Khatun N. Banerjee A. Santra SK. Behera A. Patel BK. RSC Adv. 2014; 4: 54532
  • 13 Han S. Sharma S. Park J. Kim M. Shin Y. Mishra NK. Bae JJ. Kwak JH. Jung YH. Kim IS. J. Org. Chem. 2014; 79: 275
  • 14 Guchhait SK. Chaudhary V. Rana VA. Priyadarshani G. Kandekar S. Kashyap M. Org. Lett. 2016; 18: 1534
    • 15a Millemaggi A. Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
    • 15b Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104
    • 15c Pakravan P. Kashanian S. Khodaei MM. Harding FJ. Pharmacol. Rep. 2013; 65: 313
    • 16a Zi Y. Cai Z.-J. Wang S.-Y. Ji S.-J. Org. Lett. 2014; 16: 3094
    • 16b Lollar CT. Krenek KM. Bruemmer KJ. Lippert AR. Org. Biomol. Chem. 2014; 12: 406
    • 16c Li W. Duan Z. Zhang X. Zhang H. Wang M. Jiang R. Zeng H. Liu C. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1893
    • 16d Satish G. Polu A. Ramar T. Ilangovan A. J. Org. Chem. 2015; 80: 5167
    • 16e Bredenkamp A. Mohr F. Kirsch SF. Synthesis 2015; 47: 1937
    • 16f Liu P. Guo J. Wei W. Liu X. Sun P. Eur. J. Org. Chem. 2016; 2105
    • 16g Luo J. Zhao Y. Xu X. Zheng J. Liang H. Tetrahedron Lett. 2017; 58: 4591
    • 16h Wang C.-P. Jiang G.-F. Tetrahedron Lett. 2017; 58: 1747
    • 16i Chen S. Liu Z. Shi E. Chen L. Wei W. Li H. Cheng Y. Wan X. Org. Lett. 2011; 13: 2274
  • 17 1-Methyl-1H-indoline-2,3-dione (N-methylisatin, 2a); Typical Procedure A vial was charged with Pd(OAc)2 (0.05 mmol), N-methylindole 1a (0.5 mmol), 70% aq TBHP (1 mL), and MeCN (3.0 mL), and the mixture was stirred at 80 °C for 1 h. The reaction was then quenched with sat. aq Na2SO3 to remove residual TBHP, and the mixture was extracted with EtOAc (3×10 mL). The organic layer was separated, dried (Na2SO4), and concentrated. Flash column chromatographic purification [silica gel, EtOAc–PE, 5:1] gave a red solid; yield: 67 mg (83%). 1H NMR (400 MHz, CDCl3): δ = 7.60–7.53 (m, 2 H), 7.11 (t, J = 7.4 Hz, 1 H), 6.88 (d, J = 7.8 Hz, 1 H), 3.22 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 183.3, 158.1, 151.3, 138.4, 125.1, 123.7, 117.3, 109.9, 26.1.