CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2020; 39(04): 261-270
DOI: 10.1055/s-0036-1597573
Review Article | Artigo de Revisão

Cortical Brain Functions – The Brodmann Legacy in the 21st Century

Funções corticais cerebrais – O legado de Brodmann no século XXI
Daniel Damiani
1   Department of Neuroscience, Universidade Anhembi Morumbi, São Paulo, SP, Brazil
2   Department of Neurology, Hospital do Servidor Público do Estado (IAMSPE/HSPE), São Paulo, SP, Brazil
Anna Maria Nascimento
1   Department of Neuroscience, Universidade Anhembi Morumbi, São Paulo, SP, Brazil
Leticia Kühl Pereira
1   Department of Neuroscience, Universidade Anhembi Morumbi, São Paulo, SP, Brazil
› Institutsangaben


In 1909, Korbinian Brodmann described 52 functional brain areas, 43 of them found in the human brain. More than a century later, his devoted functional map was incremented by Glasser et al in 2016, using functional nuclear magnetic resonance imaging techniques to propose the existence of 180 functional areas in each hemisphere, based on their cortical thickness, degree of myelination (cortical myelin content), neuronal interconnection, topographic organization, multitask answers, and assessment in their resting state. This opens a huge possibility, through functional neuroanatomy, to understand a little more about normal brain function and its functional impairment in the presence of a disease.


Em 1909, Korbinian Brodmann descreveu 52 áreas funcionais cerebrais, sendo 43 delas encontradas no cérebro humano. Seu consagrado mapa funcional foi incrementado por Glasser et al em 2016, utilizando técnicas de ressonância nuclear magnética funcional para propor a existência de 180 áreas funcionais em cada hemisfério, baseadas em sua espessura cortical, grau de mielinização, interconexão neuronal, organização topográfica, respostas a multitarefas ,e avaliação no seu estado de repouso. Abre-se uma enorme possibilidade, por meio da neuroanatomia funcional, de se entender um pouco mais sobre o funcionamento cerebral normal e do seu comprometimento funcional na presença de uma doença.


Eingereicht: 11. August 2016

Angenommen: 09. November 2016

Artikel online veröffentlicht:
30. Januar 2017

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

  • References

  • 1 Raichle ME. A brief history of human brain mapping. Trends Neurosci 2009; 32 (02) 118-126
  • 2 Glasser MF, Coalson TS, Robinson EÇ. et al. A multi-modal parcellation of human cerebral cortex. Nature 2016; 536 (7615): 171-178
  • 3 Glasser MF, Coalson TS, Robinson EÇ. et al. Supplementary Neuroanatomical Results For A multi-modal parcellation of human cerebral cortex. Nature 2016
  • 4 Glasser MF, Coalson TS, Robinson EÇ. et al. Supplementary Methods For A multi-modal parcellation of human cerebral cortex. Nature 2016
  • 5 Glasser MF, Coalson TS, Robinson EÇ. et al. Supplementary Results and Discussion For A multi-modal parcellation of human cerebral cortex. Nature 2016
  • 6 Peng Q, Schork A, Bartsch H. et al; Pediatric Imaging, Neurocognition and Genetics Study, Alzheimer's Disease Neuroimaging Initiative. Conservation of Distinct Genetically-Mediated Human Cortical Pattern. PLoS Genet 2016; 12 (07) e1006143
  • 7 Zilles K, Amunts K. Centenary of Brodmann's map--conception and fate. Nat Rev Neurosci 2010; 11 (02) 139-145
  • 8 Brodmann K. . in Allgemeine Chirurgie der Gehirnkrankheiten, 86426 (Verlag von Ferdinand Enke, Stuttgart, 1914).
  • 9 Toga AW, Thompson PM, Mori S, Amunts K, Zilles K. Towards multimodal atlases of the human brain. Nat Rev Neurosci 2006; 7 (12) 952-966
  • 10 Zilles K, Amunts K. Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 2009; 22 (04) 331-339
  • 11 Johansen-Berg H, Rushworth MF. Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci 2009; 32: 75-94
  • 12 Schweizer R, Voit D, Frahm J. Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation. Neuroimage 2008; 42 (01) 28-35
  • 13 Schweisfurth MA, Frahm J, Schweizer R. Individual fMRI maps of all phalanges and digit bases of all fingers in human primary somatosensory cortex. Front Hum Neurosci 2014; 8: 658
  • 14 Caspers J, Zilles K, Eickhoff SB, Schleicher A, Mohlberg H, Amunts K. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct 2013; 218 (02) 511-526
  • 15 Kujovic M, Zilles K, Malikovic A. et al. Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 2013; 218 (01) 157-172
  • 16 Klinge C, Eippert F, Röder B, Büchel C. Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind. J Neurosci 2010; 30 (38) 12798-12805
  • 17 Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 2001; 13 (04) 684-701
  • 18 Thaut MH, Trimarchi PD, Parsons LM. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern. Brain Sci 2014; 4 (02) 428-452
  • 19 Ardila A, Bernal B, Rosselli M. Language and visual perception associations: meta-analytic connectivity modeling of Brodmann area 37. Behav Neurol 2015; 2015: 565871
  • 20 Mori K, Takahashi YK, Igarashi KM, Yamaguchi M. Maps of odorant molecular features in the Mammalian olfactory bulb. Physiol Rev 2006; 86 (02) 409-433
  • 21 Neville KR, Haberly LB. The olfatory cortex. In: Shephered GM. (ed). The synaptic organization of the brain. 2004: 415-454 New York: Oxford Univ. Press;
  • 22 Jung RE, Haier RJ. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 2007; 30 (02) 135-154 , discussion 154–187
  • 23 Dick AS, Tremblay P. Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 2012; 135 (Pt 12): 3529-3550
  • 24 Schneiderman JS, Hazlett EA, Chu KW. et al. Brodmann area analysis of white matter anisotropy and age in schizophrenia. Schizophr Res 2011; 130 (1-3): 57-67
  • 25 Zou N, Chetelat G, Baydogan MG. et al. Metabolic connectivity as index of verbal working memory. J Cereb Blood Flow Metab 2015; 35 (07) 1122-1126
  • 26 Shah KB, Hayman LA, Chavali LS. et al. Glial tumors in brodmann area 6: spread pattern and relationships to motor areas. Radiographics 2015; 35 (03) 793-803
  • 27 Deary IJ, Penke L, Johnson W. The neuroscience of human intelligence differences. Nat Rev Neurosci 2010; 11 (03) 201-211
  • 28 Turkeltaub PE, Gareau L, Flowers DL, Zeffiro TA, Eden GF. Development of neural mechanisms for reading. Nat Neurosci 2003; 6 (07) 767-773
  • 29 Colom R, Karama S, Jung RE, Haier RJ. Human intelligence and brain networks. Dialogues Clin Neurosci 2010; 12 (04) 489-501
  • 30 Brodmann K. . Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth, Leipzig, 1909); English translation available in Garey LJ. Brodmann's Localization in the Cerebral Cortex. (Smith Gordon. London, 1994).
  • 31 Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006; 52 (01) 155-168
  • 32 Glasser MF, Van Essen DC. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 2011; 31 (32) 11597-11616
  • 33 Catani M, Dell'acqua F, Bizzi A. et al. Beyond cortical localization in clinico-anatomical correlation. Cortex 2012; 48 (10) 1262-1287
  • 34 Zhang D, Raichle ME. Disease and the brain's dark energy. Nat Rev Neurol 2010; 6 (01) 15-28
  • 35 Smith SM, Beckmann CF, Andersson J. et al; WU-Minn HCP Consortium. Resting-state fMRI in the human connectome project. Neuroimage 2013; 80: 144-168
  • 36 Di X, Biswal BB. Alzheimer's Disease Neuroimaging Initiative. Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain Connect 2012; 2 (05) 275-283
  • 37 Buckner RL, Krienen FM. The evolution of distributed association networks in the human brain. Trends Cogn Sci 2013; 17 (12) 648-665
  • 38 Barch DM, Burgess GÇ, Harms MP. et al; WU-Minn HCP Consortium. Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 2013; 80: 169-189
  • 39 Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S. Task-free MRI predicts individual differences in brain activity during task performance. Science 2016; 352 (6282): 216-220
  • 40 Van Essen DÇ, Glasser MF, Dierker DL, Harwell J, Coalson T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 2012; 22 (10) 2241-2262
  • 41 Strike LT, Couvy-Duchesne B, Hansell NK, Cuellar-Partida G, Medland SE, Wright MJ. Genetics and brain morphology. Neuropsychol Rev 2015; 25 (01) 63-96
  • 42 Chen C-H, Gutierrez ED, Thompson W. et al. Hierarchical genetic organization of human cortical surface area. Science 2012; 335 (6076): 1634-1636
  • 43 Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489 (7416): 391-399
  • 44 Gläscher J, Rudrauf D, Colom R. et al. Distributed neural system for general intelligence revealed by lesion mapping. Proc Natl Acad Sci U S A 2010; 107 (10) 4705-4709