Journal of Pediatric Neurology 2018; 16(02): 125-138
DOI: 10.1055/s-0037-1604218
Case Report
Georg Thieme Verlag KG Stuttgart · New York

Early Clinical Experiences with Positron Emission Tomography–Magnetic Resonance Imaging in Epilepsy: Implications for Modeling the Neurovascular Unit

Justin Brucker
1   Department of Radiology, University of Wisconsin–Madison, Wisconsin, United States
,
Alok Bhatt
2   University of Rochester Medical Center, Rochester, New York, United States
› Author Affiliations
Further Information

Publication History

03 January 2017

05 June 2017

Publication Date:
19 July 2017 (online)

Abstract

Cortical function in normal and pathologic neurologic states is largely influenced by the activity of the neurovascular unit. Hybrid technologies that combine positron emission tomography and magnetic resonance imaging (PET/MRI) offer a chance for simultaneous noninvasive evaluation of cortical glucose consumption, blood flow, and cerebrovascular reactivity. We present differing PET/MRI results for two pediatric patients undergoing evaluation for medically refractory seizures, interpreted in the context of neurovascular unit behavior, suggesting the presence of ultrastructural changes at the level of the blood brain barrier in various epilepsy disorders.

 
  • References

  • 1 Neuwelt EA, Bauer B, Fahlke C. , et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12 (03) 169-182
  • 2 Peterson EC, Wang Z, Britz G. Regulation of cerebral blood flow. Int J Vasc Med 2011; 2011: 823525
  • 3 Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2016; 19 (06) 771-783
  • 4 Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999; 22 (05) 208-215
  • 5 Huneau C, Benali H, Chabriat H. Investigating human neurovascular coupling using functional neuroimaging: a critical review of dynamic models. Front Neurosci 2015; 9 (476) 467
  • 6 Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol 2014; 306 (01) H1-H14
  • 7 Vangilder RL, Rosen CL, Barr TL, Huber JD. Targeting the neurovascular unit for treatment of neurological disorders. Pharmacol Ther 2011; 130 (03) 239-247
  • 8 Stanimirovic DB, Friedman A. Pathophysiology of the neurovascular unit: disease cause or consequence?. J Cereb Blood Flow Metab 2012; 32 (07) 1207-1221
  • 9 Tsukada H, Sato K, Kakiuchi T, Nishiyama S. Age-related impairment of coupling mechanism between neuronal activation and functional cerebral blood flow response was restored by cholinesterase inhibition: PET study with microdialysis in the awake monkey brain. Brain Res 2000; 857 (1-2): 158-164
  • 10 Rosengarten B, Dannhardt V, Burr O. , et al. Neurovascular coupling in Parkinson's disease patients: effects of dementia and acetylcholinesterase inhibitor treatment. J Alzheimers Dis 2010; 22 (02) 415-421
  • 11 Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007; 99 (01) 4-9
  • 12 Ellis MJ, Ryner LN, Sobczyk O. , et al. Neuroimaging assessment of cerebrovascular reactivity in concussion: current concepts, methodological considerations, and review of the literature. Front Neurol 2016; 7: 61
  • 13 Østergaard L, Engedal TS, Aamand R. , et al. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab 2014; 34 (10) 1585-1598
  • 14 Pillai JJ, Zacà D. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors. Technol Cancer Res Treat 2012; 11 (04) 361-374
  • 15 del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med 2010; 267 (02) 156-171
  • 16 Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev 2015; 95 (03) 953-993
  • 17 Chang JC, Brennan KC, He D. , et al. A mathematical model of the metabolic and perfusion effects on cortical spreading depression. PLoS One 2013; 8 (08) e70469
  • 18 Bertini G, Bramanti P, Constantin G. , et al. New players in the neurovascular unit: insights from experimental and clinical epilepsy. Neurochem Int 2013; 63 (07) 652-659
  • 19 Junior VB, Wichert-Ana L, Silva RPLF. , et al. Neurovascular coupling and functional neuroimaging in epilepsy. J Epilepsy Clin Neurophysiol 2009; 15 (01) 30-36
  • 20 Hwang SI, Kim JH, Park SW. , et al. Comparative analysis of MR imaging, positron emission tomography, and ictal single-photon emission CT in patients with neocortical epilepsy. Am J Neuroradiol 2001; 22 (05) 937-946
  • 21 Won HJ, Chang KH, Cheon JE. , et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. Am J Neuroradiol 1999; 20 (04) 593-599
  • 22 Buch K, Blumenfeld H, Spencer S, Novotny E, Zubal IG. Evaluating the accuracy of perfusion/metabolism (SPET/PET) ratio in seizure localization. Eur J Nucl Med Mol Imaging 2008; 35 (03) 579-588
  • 23 Fierstra J, Conklin J, Krings T. , et al. Impaired peri-nidal cerebrovascular reserve in seizure patients with brain arteriovenous malformations. Brain 2011; 134 (Pt 1): 100-109
  • 24 Shin JW, Chu K, Shin SA. , et al. Clinical applications of simultaneous PET/MR imaging using (R)-[11C]-verapamil with cyclosporin A: preliminary results on a surrogate marker of drug-resistant epilepsy. Am J Neuroradiol 2016; 37 (04) 600-606
  • 25 Karis JP. ; Expert Panel on Neurologic Imaging. Epilepsy. Am J Neuroradiol 2008; 29 (06) 1222-1224
  • 26 Castillo M. Imaging intractable epilepsy: how many tests are enough?. Am J Neuroradiol 1999; 20 (04) 534-535
  • 27 Friedman E. Epilepsy imaging in adults: getting it right. Am J Roentgenol 2014; 203 (05) 1093-1103
  • 28 Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342 (05) 314-319
  • 29 Lee KK, Salamon N. [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. Am J Neuroradiol 2009; 30 (10) 1811-1816
  • 30 Murphy MA, O'Brien TJ, Morris K, Cook MJ. Multimodality image-guided surgery for the treatment of medically refractory epilepsy. J Neurosurg 2004; 100 (03) 452-462
  • 31 Bailey DL, Antoch G, Bartenstein P. , et al. Combined PET/MR: the real work has just started. Summary report of the Third International Workshop on PET/MR Imaging; February 17-21, 2014, Tübingen, Germany. Mol Imaging Biol 2015; 17 (03) 297-312
  • 32 Garibotto V, Heinzer S, Vulliemoz S. , et al. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 2013; 38 (01) e13-e18
  • 33 Torigian DA, Zaidi H, Kwee TC. , et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013; 267 (01) 26-44
  • 34 Partovi S, Kohan A, Rubbert C. , et al. Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging 2014; 4 (02) 202-212
  • 35 Tateishi U, Nakamoto Y, Murakami K. , et al. Guidelines for the Clinical Use of 18 F-FDG-PET/MRI 2012 (Ver 1.0) Part 1. JSNM. Available at http://www.jsnm.org/english/publications . Accessed February 2, 2017
  • 36 Pillai JJ, Mikulis DJ. Cerebrovascular reactivity mapping: an evolving standard for clinical functional imaging. Am J Neuroradiol 2015; 36 (01) 7-13
  • 37 Wintermark P, Lechpammer M, Warfield SK. , et al. Perfusion imaging of focal cortical dysplasia using arterial spine labeling: correlation with histopathological vascular density. J Child Neurol 2013; 28 (11) 1474-1482
  • 38 Bek S, Kaşikçi T, Koç G. , et al. Cerebral vasomotor reactivity in epilepsy patients. J Neurol 2010; 257 (05) 833-838
  • 39 Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985) 2006; 100 (03) 1059-1064
  • 40 Squier W, Jansen A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun 2014; 2 (02) 80
  • 41 Pilz D, Stoodley N, Golden JA. Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropathol Exp Neurol 2002; 61 (01) 1-11
  • 42 Widjaja E, Li B, Medina LS. Diagnostic evaluation in patients with intractable epilepsy and normal findings on MRI: a decision analysis and cost-effectiveness study. Am J Neuroradiol 2013; 34 (05) 1004-1009 , S1–S2
  • 43 Boellaard R, Delgado-Bolton R, Oyen WJG. , et al; European Association of Nuclear Medicine (EANM). FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42 (02) 328-354
  • 44 Zhu H, Goris ML. Factors affecting brain metabolism measured with 18FDG. Open J Med Imaging 2012; 2: 19-22
  • 45 Zhu H, Goris M. Hematological and biochemical factors affecting brain metabolism measured with 18FDG PET. J Nucl Med 2011; 51 (01) 1278
  • 46 Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin 2014; 9 (02) 129-140
  • 47 Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 1997; 21 (01) 2-21
  • 48 Alkire MT, Pomfrett CJ, Haier RJ. , et al. Functional brain imaging during anesthesia in humans: effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 1999; 90 (03) 701-709
  • 49 Mishra LD. Cerebral blood flow and anaesthesia: a review. Indian J Anaesth 2002; 46 (02) 87-95
  • 50 Frahm J, Krüger G, Merboldt KD, Kleinschmidt A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 1996; 35 (02) 143-148
  • 51 Lin AL, Fox PT, Hardies J, Duong TQ, Gao JH. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A 2010; 107 (18) 8446-8451
  • 52 Pendse N, Wissmeyer M, Altrichter S. , et al. Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol 2010; 37 (01) 60-63
  • 53 Miyaji Y, Yokoyama M, Kawabata Y. , et al. Arterial spin-labeling magnetic resonance imaging for diagnosis of late seizure after stroke. J Neurol Sci 2014; 339 (1-2): 87-90
  • 54 Sugita K, Kamida T, Matsuta H, Shimomura T, Fujiki M. Usefulness of pulsed arterial spin-labeling MRI for localizing a seizure focus: a surgical case. Seizure 2014; 23 (04) 318-320
  • 55 Bernstein MA, King KF, Zhou XJ. Handbook of MRI Pulse Sequences. Burlington, MA: Elsevier Academic Press; 2004: 802-827
  • 56 Pollock JM, Tan H, Kraft RA, Whitlow CT, Burdette JH, Maldjian JA. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am 2009; 17 (02) 315-338
  • 57 Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. Am J Neuroradiol 2008; 29 (07) 1228-1234
  • 58 Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. Am J Neuroradiol 2008; 29 (07) 1235-1241
  • 59 Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. Am J Neuroradiol 2008; 29 (08) 1428-1435
  • 60 Vidorreta M, Wang Z, Rodríguez I, Pastor MA, Detre JA, Fernández-Seara MA. Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage 2013; 66: 662-671
  • 61 Faro SH, Mohamed FB. Functional Neuroradiology: Principles and Clinical Applications. New York, NY: Springer; 2011: 53-59
  • 62 Ho CY, Cardinal JS, Kamer AP, Lin C, Kralik SF. Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. Am J Neuroradiol 2016; 37 (03) 544-551
  • 63 Lin X, Lee M, Buck O. , et al. Diagnostic accuracy of T1-weighted dynamic contrast-enhanced-MRI and DWI/ADC for differentiation of Glioblastoma and Primary CNS lymphoma. Am J Neuroradiol 2017; 38 (03) 485-491
  • 64 Bright MG, Murphy K. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. Neuroimage 2013; 83: 559-568
  • 65 Faro SH, Mohamed FB. Functional Neuroradiology: Principles and Clinical Applications. New York, NY: Springer; 2011: 345-352
  • 66 Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. Am J Neuroradiol 2009; 30 (05) 876-884
  • 67 Ozgur HT, Kent Walsh T, Masaryk A. , et al. Correlation of cerebrovascular reserve as measured by acetazolamide-challenged SPECT with angiographic flow patterns and intra- or extracranial arterial stenosis. Am J Neuroradiol 2001; 22 (05) 928-936
  • 68 Zappe AC, Uludağ K, Logothetis NK. Direct measurement of oxygen extraction with fMRI using 6% CO2 inhalation. Magn Reson Imaging 2008; 26 (07) 961-967
  • 69 Germuska M, Bulte DP. MRI measurement of oxygen extraction fraction, mean vessel size and cerebral blood volume using serial hyperoxia and hypercapnia. Neuroimage 2014; 92: 132-142
  • 70 Christen T, Bolar DS, Zaharchuk G. Imaging brain oxygenation with MRI using blood oxygenation approaches: methods, validation, and clinical applications. Am J Neuroradiol 2013; 34 (06) 1113-1123