Synlett 2018; 29(08): 1037-1042
DOI: 10.1055/s-0037-1609321
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Dihydrospiro Furo[2,3-c]pyrazoles Promoted by Hypervalent Iodine in Water

Ashok Kale
a   Division of Crop Protection Chemicals, CSIR – Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India, Email: krishnu@iict.res.in
b   AcSIR – Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
,
Nagaraju Medishetti
a   Division of Crop Protection Chemicals, CSIR – Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India, Email: krishnu@iict.res.in
,
Chiranjeevi Bingi
a   Division of Crop Protection Chemicals, CSIR – Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India, Email: krishnu@iict.res.in
,
Krishnaiah Atmakur*
a   Division of Crop Protection Chemicals, CSIR – Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India, Email: krishnu@iict.res.in
b   AcSIR – Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
› Author Affiliations
We are grateful to SERB-DST, New Delhi for financial support (grant no. EEQ/20l6/000066). Ashok is thankful to UGC, New Delhi for SRF.
Further Information

Publication History

Received: 07 December 2017

Accepted after revision: 29 January 2018

Publication Date:
26 February 2018 (online)


Abstract

A simple, green protocol has been accomplished for the synthesis of dihydrospirofuro[2,3-c]pyrazoles in aqueous medium involving pyrazolone and aldehydes in a one-pot reaction promoted by bis(acetoxy)iodobenzene (BAIB) at ambient temperature. The protocol presented herein describes a new transformation where two molecules of pyrazolone react with an aldehyde in a Knoevenagel condensation followed by a Michael addition, and the resulting dienol was rearranged to the title compound. High compatibility, easy work-up, and excellent yields are the advantages of this protocol.

Supporting Information

 
  • References

    • 1a Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 1b Chauhan P. Mahajan S. Enders D. Chem. Commun. 2015; 51: 12890
    • 1c Kimata A. Nakagawa H. Ohyama R. Fukuuchi T. Ohta S. Suzuki T. Miyata N. J. Med. Chem. 2007; 50: 5053
    • 1d Kojima M. Hosoda H. Date Y. Nakazato M. Matsuo H. Kangawa K. Nature 1999; 402: 656
    • 2a Che MS. Barve PA. Suryanarayan VJ. Heterocycl. Chem. 2007; 44: 49
    • 2b Schlemminger I. Schmidt B. Flockerzi D. Tenor H. Zitt C. Hatzelmann A. Marx D. Braun C. Kuelzer R. Heuser A. Kley H.-P. Sterk GJ. WO 2010055083, 2008
    • 2c Schmidt B. Scheufler C. Volz J. Feth MP. Hummel R.-P. Hatzelmann A. Zitt C. Wohlsen A. Marx D. Kley H.-P. Ockert D. Heuser A. Christiaans JA. M. Sterk GJ. Menge WM. P. B. WO 2008138939, 2010
    • 3a Kumar V. Kaur K. Gupta GK. Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 3b Fustero S. Sánchez-Roselló M. Barrio P. Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 3c Narender Reddy E. Chiranjeevi B. Sudha Sravanti K. Ramesh U. Jagadeesh Babu N. Krishnaiah A. Bioorg. Med. Chem. Lett. 2015; 25: 2918
  • 4 Zou B. Yap P. Sonntag L.-S. Leong SY. Yeung BK. S. Keller TH. Molecules 2012; 17: 10131
    • 5a Okita T. Isobe M. Tetrahedron 1994; 50: 11143
    • 5b Kornet MJ. Tnio AP. J. Med. Chem. 1976; 19: 892
    • 6a The Merck Index. Budavari S. Merck; Rahway, NJ: 1989. 11th ed. 715
    • 6b The Merck Index. Merck; Whitehouse Station, NJ: 2006. 14th ed.
    • 7a Cooper DH. Wright DL. Molecules 2013; 18: 2438
    • 7b Jiangsu New Medical College: Dictionary of Chinese Traditional Medicines. Shanghai Science and Technology Publishing House; Shanghai: 1977: 1967
    • 7c Wang Y. Mo S.-Y. Wang S.-J. Li S. Yang Y.-C. Shi J.-G. Org. Lett. 2005; 7: 1675
    • 8a Huggins C. Hodges CV. Cancer Res. 1941; 1: 293
    • 8b Gittes RF. N. Engl. J. Med. 1991; 24: 236
    • 8c Albert BJ. Sivaramakrishnan A. Naka T. Czaicki NL. Koide K. J. Am. Chem. Soc. 2007; 129: 2648
    • 8d Balachran R. Hopkins TD. Thomas CA. Wipf P. Day BW. Chem. Biol. Drug. Des. 2008; 71: 117
    • 9a Fisher E. Hirshberg Y. J. Chem. Soc. 1952; 11: 4522
    • 9b Hirshberg Y. J. Am. Chem. Soc. 1956; 78: 2304
    • 9c Berkovic G. Krongauz V. Weiss V. Chem. Rev. 2000; 100: 1741
    • 9d Witiak DT. Cavestri RC. Newman HA. Baldwin JR. Sober CL. Feller DR. J. Med. Chem. 1978; 21: 1198
    • 10a Companyó X. Zea A. Alba A.-N. Mazzanti R. Moyano A. Rios AR. Chem. Commun. 2010; 46: 6953
    • 10b Zea A. Alba A.-N. Mazzanti R. Moyano A. Rios AR. Org. Biomol. Chem. 2011; 9: 6519
    • 10c Liang J. Chen Q. Liu L. Jiang X. Wang R. Org. Biomol. Chem. 2013; 11: 1441
    • 10d Zhang J.-X. Li N.-K. Liu Z.-M. Huang X.-F. Geng Z.-C. Wang X.-W. Adv. Synth. Catal. 2013; 355: 797
    • 10e Chauhan P. Mahajan S. Loh CC. J. Raabe G. Enders D. Org. Lett. 2014; 16: 2954
  • 11 Han X. Yao W. Wang T. Tan YR. Yan Z. Kwiatkowski J. Lu Y. Angew. Chem. Int. Ed. 2014; 53: 5643
  • 12 Hack D. Dürr AB. Deckers K. Chauhan P. Seling N. Rübenach L. Mertens L. Raabe G. Schoenebeck F. Enders D. Angew. Chem. Int. Ed. 2016; 55: 1797
  • 13 Li J.-H. Du D.-M. Adv. Synth. Catal. 2015; 357: 3986
  • 14 Nan J. Zuo Z. Luo L. Bai L. Zheng H. Yuan Y. Liu J. Luan X. Wang Y. J. Am. Chem. Soc. 2013; 135: 17306
    • 15a Zheng J. Wang S.-B. Zheng C. You S.-L. J. Am. Chem., Soc. 2015; 137: 4880
    • 15b Zheng C. Zheng J. You S.-L. ACS Catal. 2016; 6: 262
  • 16 Seoane A. Casanova N. Quiñones N. Mascareñas JL. Gulías M. J. Am. Chem. Soc. 2014; 136: 7607
    • 17a Chidipudi SR. Khan I. Lam HW. Angew. Chem. Int. Ed. 2012; 51: 12115
    • 17b Dooley JD. Reddy Chidipudi S. Lam HW. J. Am. Chem. Soc. 2013; 135: 10829
  • 18 Yao C. Wang Y. Li T. Yu C. Li L. Wang C. Tetrahedron 2013; 69: 10593
  • 19 Sahu DP. Giri SK. Varshney V. Kumar S. Synth. Commun. 2009; 39: 3406
    • 20a Zheng J. Li P. Gu M. Lin A. Yao H. Org. Lett. 2017; 19: 2829
    • 20b Zheng J. Wang S.-B. Zheng C. You S.-L. Angew. Chem. Int. Ed. 2017; 56: 4540
  • 21 Samai S. Nandi GC. Kumar R. Singh MS. Tetrahedron Lett. 2009; 50: 7096
  • 22 Madhu C. Narender Reddy E. Chiranjeevi B. Jagadeesh Babu N. Krishnaiah A. Green Chem. 2014; 16: 3237
  • 23 Savaiko B. F.O. Licht's World Ethanol Biofuels Rep. 2004; 2: 20
    • 24a Polshettiwar V. Varma RS. Aqueous Microwave Assisted Chemistry; RSC Green Chemistry 2010; Chap. 1
    • 24b Organic Synthesis in Water. Grieco PA. Blackie Academic and Professional; London: 1998
    • 24c Butler RN. Coyne AG. Chem. Rev. 2010; 110: 6302
    • 24d Organic Reactions in Water . Lindstrom UM. Blackwell Publishing; Oxford: 2007
    • 24e McGonagle FI. Sneddon HF. Jamieson C. Watson AJ. B. ACS Sustainable Chem. Eng. 2014; 2: 523
    • 26a Ashok K. Madhu C. Chiranjeevi B. Jagadeesh Babu N. Krishnaiah A. Org. Biomol. Chem. 2016; 14: 582
    • 26b Ashok K. Chiranjeevi B. Sarada S. Ganesh Kumar C. Krishnaiah A. Bioorg. Med. Chem. Lett. 2016; 26: 4899
  • 27 Sun B. Liu K. Han J. Zhao L.-Y. Su X. Lin B. Zhao D.-M. Cheng M.-S. Bioorg. Med. Chem. 2015; 23: 6763
  • 28 Prasun M. Das AR. J. Org. Chem. 2017; 82: 2794
    • 29a Monireh Z. Batool A. RSC Adv. 2015; 5: 87769
    • 29b Li X.-L. Wang Y.-M. Tian B. Matsuura T. Meng J.-B. J. Heterocycl. Chem. 1998; 35: 129