Synlett 2018; 29(17): 2288-2292
DOI: 10.1055/s-0037-1609625
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium(0)-Catalyzed Diastereoselective (3+2) Cycloadditions of Vinylcyclopropanes with Sulfonyl-Activated Imines

,
Maxime Laugeois
,
Virginie Ratovelomanana-Vidal
,
PSL Université Paris, Chimie ParisTech, CNRS Institut de Recherche de Chimie Paris, 11, Rue Pierre et Marie Curie, Paris, 75005, France   Email: maxime.vitale@chimieparistech.psl.eu
› Author Affiliations
This work was supported by the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche and the Centre National de la Recherche Scientifique.
Further Information

Publication History

Received: 04 July 2018

Accepted after revision: 30 July 2018

Publication Date:
31 August 2018 (online)


Abstract

We report herein a palladium(0)-catalyzed (3+2)-cycloaddition process between vinylcyclopropanes and cyclic or acyclic sulfonylimines. This reaction, which operates under low catalyst loading and practical reaction conditions, gives access to a wide variety of N-heterocyclic derivatives in good to excellent yields and high levels of diastereoselectivity.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Lautens M. Klute W. Tam W. Chem. Rev. 1996; 96: 49
    • 1b López F. Mascareñas JL. Beilstein J. Org. Chem. 2011; 7: 1075
    • 1c De N. Yoo EJ. ACS Catal. 2018; 8: 48

      For reviews, see:
    • 2a Meazza M. Guo H. Rios R. Org. Biomol. Chem. 2017; 15: 2479
    • 2b Fumagalli G. Stanton S. Bower JF. Chem. Rev. 2017; 117: 9404
    • 2c Allen BD. W. Lakeland CP. Harrity JP. A. Chem. Eur. J. 2017; 23: 13830
    • 2d Ganesh V. Chandrasekaran S. Synthesis 2016; 48: 4347
    • 2e Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
    • 2f Jiao L. Yu Z.-X. J. Org. Chem. 2013; 78: 6842
    • 2g Hudlicky T. Reed JW. Angew. Chem. Int. Ed. 2010; 49: 4864
  • 3 Shimizu I. Ohashi Y. Tsuji J. Tetrahedron Lett. 1985; 26: 3825
    • 4a Goldberg AF. G. Stoltz BM. Org. Lett. 2011; 13: 4474
    • 4b Trost BM. Morris PJ. Angew. Chem. Int. Ed. 2011; 50: 6167
    • 4c Trost BM. Morris PJ. Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
    • 4d Mei L. Wei Y. Xu Q. Shi M. Organometallics 2012; 31: 7591
    • 4e Xie M.-S. Wang Y. Li J.-P. Du C. Zhang Y.-Y. Hao E.-J. Zhang Y.-M. Qu G.-R. Guo H.-M. Chem. Commun. 2015; 51: 12451
    • 4f Li W.-K. Liu Z.-S. He L. Kang T.-R. Liu Q.-Z. Asian J. Org. Chem. 2015; 4: 28
    • 4g Wei F. Ren C.-L. Wang D. Liu L. Chem. Eur. J. 2015; 21: 2335
    • 4h Liu Z.-S. Li W. Kang T. He L. Liu Q. Org. Lett. 2015; 17: 150
    • 4i Yuan Z. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 3370
    • 4j Ma C. Huang Y. Zhao Y. ACS Catal. 2016; 6: 6408
    • 4k Laugeois M. Ponra S. Ratovelomanana-Vidal V. Michelet V. Vitale MR. Chem. Commun. 2016; 52: 5332
    • 4l Halskov KS. Næsborg L. Tur F. Jørgensen KA. Org. Lett. 2016; 18: 2220
    • 4m Meazza M. Rios R. Chem. Eur. J. 2016; 22: 9923
    • 4n Zhu H. Du P. Li J. Liao Z. Liu G. Li H. Wang W. Beilstein J. Org. Chem. 2016; 12: 1340
    • 4o Zhang K. Meazza M. Izaga A. Contamine C. Gimeno M. Herrera R. Rios R. Synthesis 2016; 49: 167
    • 4p Laugeois M. Ling J. Férard C. Michelet V. Ratovelomanana-Vidal V. Vitale MR. Org. Lett. 2017; 19: 2266
    • 4q Gee YS. Rivinoja DJ. Wales SM. Gardiner MG. Ryan JH. Hyland CJ. T. J. Org. Chem. 2017; 82: 13517
    • 4r Ling J. Laugeois M. Michelet V. Ratovelomanana-Vidal V. Vitale MR. Synlett 2018; 29: 928
  • 5 Parsons AT. Campbell MJ. Johnson JS. Org. Lett. 2008; 10: 2541
  • 6 Mei LY. Wei Y. Xu Q. Shi M. Organometallics 2013; 32: 3544
    • 7a Mei LY. Tang XY. Shi M. Chem. Eur. J. 2014; 20: 13136
    • 7b Cao B. Mei L.-Y. Li X.-G. Shi M. RSC Adv. 2015; 5: 92545
    • 8a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 8b Michael JP. Nat. Prod. Rep. 2005; 22: 603

      For seminal work concerning the (3+2) cycloaddition of donor/acceptor cyclopropanes with imines under Lewis acid catalysis, see:
    • 9a Alper PB. Meyers C. Lerchner A. Siegel DR. Carreira EM. Angew. Chem. Int. Ed. 1999; 38: 3186
    • 9b Carson CA. Kerr MA. J. Org. Chem. 2005; 70: 8242

    • For a review, see:
    • 9c Schneider TF. Kaschel J. Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
  • 10 Yamamoto K. Ishida T. Tsuji J. Chem. Lett. 1987; 16: 1157
    • 11a Pursley D. Plietker B. Synlett 2014; 25: 2316
    • 11b Dieskau AP. Holzwarth MS. Plietker B. J. Am. Chem. Soc. 2012; 134: 5048
  • 12 Tombe R. Kurahashi T. Matsubara S. Org. Lett. 2013; 15: 1791
  • 13 During the reviewing process of this manuscript, the palladium-catalyzed (3+2) cycloaddition of sulfamate-derived cyclic imines with VCPs has been reported: Wang Q. Wang C. Shi W. Xiao Y. Guo H. Org. Biomol. Chem. 2018; 16: 4881

    • For selected examples, see:
    • 14a Liu Y. Kang TR. Liu QZ. Chen LM. Wang YC. Liu J. Xie YM. Yang JL. He L. Org. Lett. 2013; 15: 6090
    • 14b Yu H. Zhang L. Yang Z. Li Z. Zhao Y. Xiao Y. Guo H. J. Org. Chem. 2013; 78: 8427
    • 14c Sim JT. Kim H. Kim SG. Tetrahedron Lett. 2016; 57: 5907
    • 14d Wang J. Li F. Shen Q. Pei W. Zhao WX. Liu L. Synthesis 2016; 48: 441
    • 14e Mao B. Shi W. Liao J. Liu H. Zhang C. Guo H. Org. Lett. 2017; 19: 6340
    • 14f Kim H. Kim Y. Kim SG. J. Org. Chem. 2017; 82: 8179

      For palladium-catalyzed cycloaddition reaction with sulfamate-derived cyclic imines, see:
    • 15a Wu Y. Yuan C. Wang C. Mao B. Jia H. Gao X. Liao J. Jiang F. Zhou L. Wang Q. Guo H. Org. Lett. 2017; 19: 6268
    • 15b Lee K. Van Der A. De Figueiredo RM. Campagne JM. Org. Lett. 2018; 20: 1444
    • 15c Wang C. Li Y. Wu Y. Wang Q. Shi W. Yuan C. Zhou L. Xiao Y. Guo H. Org. Lett. 2018; 20: 2880 ; see also ref. 13
  • 16 The major diastereoisomer of 3aa was isolated by recrystallization, and its relative stereochemistry was determined by X-ray diffraction analysis. CCDC 1817315 contains the supplementary crystallographic data for 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 17 Under these conditions, even after 24 h, we could not improve the 15:1 dr as a probable consequence of parasitic catalyst deactivation.
  • 18 Degradation may occur through oligomerization: Suzuki M. Sawada S. Saegusa T. Macromolecules 1989; 22: 1505

    • The Cloke–Wilson rearrangement product 8 was isolated in 53% yield (Figure [1]). For previous nickel- and iron-catalyzed Cloke–Wilson rearrangements of VCPs, see:
    • 19a Bowman RK. Johnson JS. Org. Lett. 2006; 8: 573
    • 19b Lin C.-H. Pursley D. Klein JE. M. N. Teske J. Allen JA. Rami F. Köhn A. Plietker B. Chem. Sci. 2015; 6: 7034
  • 20 Diastereoselectivity was established by 1H NMR NOESY studies on compound 5 and 7a. See Supporting Information for more details.
  • 21 Fryzuk MD. Bosnich B. J. Am. Chem. Soc. 1977; 99: 6262
  • 22 General Procedure for the Palladium-Catalyzed (3+2) Cyclo­addition of VCPs with Sulfonyl-Activated Imines In a screw-capped vial, vinylcyclopropane (0.44 mmol, 1.1 equiv), the desired sulfonylimine (0.40 mmol, 1.0 equiv), and toluene (800 μL) were successively added. The resulting mixture was stirred at room temperature for 5 min, before a solution of Pd2(dba)3·CHCl3 (4.1 mg, 0.004 mmol, 0.01 equiv) and dppe (3.2 mg, 0.008 mmol, 0.02 equiv) in toluene (800 μL), previously stirred at room temperature for 25 min, was transferred via cannula. The cannula was washed with additional toluene (400 μL) (total volume of toluene = 2.0 mL), and the mixture was stirred at room temperature (for the appropriate reaction time see Supporting Information). CH2Cl2 (10 mL) was then added, and the mixture was loaded onto a small silica plug, eluted with additional CH2Cl2 (40 mL), and concentrated under reduced pressure. After measurement of the diastereomeric ratio by 1H NMR spectroscopy, the resulting crude mixture was purified by either flash column chromatography or trituration in hexane to afford the desired cycloadduct. Cycloadduct 3aa Following the typical procedure, compound 3aa was obtained as a white solid (119 mg, 36:1 dr, 99% yield) after flash column chromatography (toluene/cyclohexane/ethyl acetate = 19:19:2 to 9:9:2). Analytical Data 1H NMR (400 MHz, CDCl3): δ = 7.58–7.47 (m, 2 H), 7.41 (td, J = 7.7, 1.0 Hz, 1 H), 7.23 (dd, J = 8.2, 0.7 Hz, 1 H), 5.99–5.83 (m, 1 H), 5.61–5.37 (m, 3 H), 4.91–4.79 (m, 1 H), 3.02 (dd, J = 13.3, 6.1 Hz, 1 H), 2.56 (dd, J = 13.3, 10.4 Hz, 1 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 151.0, 133.9, 132.2, 127.2, 126.8, 120.9, 120.4, 117.3, 112.5, 111.3, 69.7, 64.2, 42.1, 41.5 ppm. IR (film): ν = 1739, 1395, 1197, 1175, 1108, 1041, 885, 825 cm–1; mp 176–178 °C. HRMS (ESI): m/z [M + Na+] calcd: 324.0413; found: 324.0417.