Synlett 2018; 29(15): 1995-2000
DOI: 10.1055/s-0037-1610218
letter
© Georg Thieme Verlag Stuttgart · New York

Photophysical and Electrochemical Properties and Anticancer Activities of Porphyrin-Cored Fluorenodendrimers Synthesized by Click Chemistry

Devaraj Anandkumar
Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India   Email: perumalrajakumar@gmail.com
,
Perumal Rajakumar*
Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India   Email: perumalrajakumar@gmail.com
› Author Affiliations
Financial assistance for this work was provided by the UGC-UPE Phase II Programme.

Further Information

Publication History

Received: 02 April 2018

Accepted after revision: 02 July 2018

Publication Date:
14 August 2018 (online)


Abstract

A new class of porphyrin-cored fluorenodendrimers were synthesized by a convergent approach through click chemistry. The zeroth-, first-, and second-generation porphyrin-cored fluorenodendrimers were characterized by means of 1H and 13C NMR spectroscopy, UV-vis spectroscopy, fluorescent spectroscopy, elemental analysis, and MALDI-TOF mass spectrometry. The UV-vis spectrum of the dendrimers showed an increase in the absorption intensity on increasing the dendrimer generation, and a bathochromic shift was observed for higher-generation dendrimers compared with lower-generation dendrimers. The dendrimers showed emission bands at 317, 604–668, and 617–668 nm, the intensity of which increased with increasing dendrimer generation. All the synthesized dendrimers exhibited a reversible oxidation potential in cyclic voltammetry. The therapeutic efficacy of the porphyrin-cored fluorenodendrimers for the inhibition of a growth tumor cell (PA-1) increased with increasing generation number of the dendrimer.

Supporting Information

 
  • References

  • 1 Dendrimers and other Dendritic Polymers . Tomalia DA. Fréchet JM. J. Wiley; Chichester: 2001
  • 2 Hecht S. Fréchet JM. J. Angew. Chem. Int. Ed. 2001; 40: 74
  • 3 Piotti ME. Rivera FJr. Bond R. Hawker CJ. Frechet JM. J. J. Am. Chem. Soc. 1999; 121: 9471
  • 4 Günes S. Neugebauer H. Sariciftci NS. Chem. Rev. 2007; 107: 1324
  • 5 Zhan X. Tan Z. Domercq B. An Z. Zhang X. Barlow S. Li Y. Zhu D. Kippelen B. Marder SR. J. Am. Chem. Soc. 2007; 129: 7246
  • 6 Kira A. Umeyama T. Matano Y. Yoshida K. Isoda S. Park JK. Kim D. Imahori H. J. Am. Chem. Soc. 2009; 131: 3198
    • 7a Denk W. Strickler JH. Webb WW. Science 1990; 248: 73
    • 7b Zipfel WR. Williams RM. Webb WW. Nat. Biotechnol. 2003; 21: 1369
  • 8 Nishiyama N. Stapert HR. Zhang G.-D. Takasu D. Jiang D.-L. Nagano T. Aida T. Kataoka K. Bioconjugate Chem. 2003; 14: 58
  • 9 Minghao S. Zhishan B. J. Polym. Sci. Part A: Polym. Chem. 2007; 45: 111
  • 10 Finikova O. Galkin A. Rozhkov V. Cordero M. Hägerhäll C. Vinogradov S. J. Am. Chem. Soc. 2003; 125: 4882
  • 11 Kiran PP. Reddy DR. Maiya BG. Dharmadhikari AK. Kumar GR. Desai NR. Appl. Opt. 2002; 41: 7631
  • 12 Perepichka DF. Bryce MR. Perepichka IF. Lyubchik SB. Christensen CA. Godbert N. Batsanov AS. Levillain E. McInnes EJ. L. Zhao JP. J. Am. Chem. Soc. 2002; 124: 14227
  • 13 Gaylord BS. Heeger AJ. Bazan GC. J. Am. Chem. Soc. 2003; 125: 896
    • 14a Ma H. Jen AK.-Y. Adv. Mater. (Weinheim, Ger.) 2001; 13: 1201
    • 14b Goodson TG. III. Acc. Chem. Res. 2005; 38: 99
  • 15 Bürgi L. Richards TJ. Friend RH. Sirringhaus H. J. Appl. Phys. 2003; 94: 6129
  • 16 Belfield KD. Hagan DJ. Van Stryland EW. Schafer KJ. Negres RA. Org. Lett. 1999; 1: 1575
  • 17 Sugou K. Sasaki K. Kitajima K. Iwaki T. Kuroda Y. J. Am. Chem. Soc. 2002; 124: 1182
  • 18 Li L.-L. Diau EW.-G. Chem. Soc. Rev. 2013; 42: 291
  • 19 Meldal CW. Tornoe C. Meldal M. J. Org. Chem. 2002; 67: 3057
  • 20 Anandkumar D. Ganesan S. Rajakumar P. Maruthamuthu P. New J. Chem. 2017; 41: 11238
  • 21 Rajakumar P. Raja R. Tetrahedron Lett. 2010; 51: 4365
  • 22 Anandkumar D. Rajakumar P. Steroids 2017; 125: 37
  • 23 Yao S. Belfield KD. J. Org. Chem. 2005; 70: 5126
  • 24 Anandkumar D. Raja R. Rajakumar P. RSC Adv. 2016; 6: 25808
  • 25 Lindsey JS. Schreiman IC. Hsu HC. Kearney PC. Marguerettaz AM. J. Org. Chem. 1987; 52: 827
  • 26 Click Reaction: General Procedure A mixture of the appropriate alkyne (1.0 equiv), the appropriate azide-functionalized compound (1.2 equiv per azide functional unit), CuSO4·5H2O (5 mol %), and sodium ascorbate (10 mol%) in 3:1 THF–H2O was stirred for 10 h at r.t. until the reaction was complete. The residue obtained after evaporation of the solvent was washed thoroughly with H2O and dissolved in CHCl3 (150 mL). The organic layer was separated, washed with brine (150 mL), dried (Na2SO4), and concentrated to give the crude triazole, which was purified by column chromatography (silica gel, CHCl3–MeOH) Dendrimer 1 The reaction of dendritic azide 11 (0.091 g, 0.23 mmol, 1.0 equiv.) and porphyrin 22 (0.05 g, 0.06 mmol, 3.1 equiv) according to the general procedure, with elution by 19:1 CHCl3–MeOH, gave a purple solid; yield: 0.1 g (74%); mp 132 °C. 1H NMR (300 MHz, CDCl3): δ = 0.60 (br s, 16 H); 0.76 (t, J = 6.3 Hz, 24 H), 1.04–1.11 (m, 48 H), 1.95 (d, J = 6 Hz, 16 H), 5.19 (s, 8 H), 5.57 (s, 8 H), 7.16–7.33 (m, 28 H), 7.53 (s, 4 H); 7.68 (d, J = 6.9 Hz, 8 H), 8.08 (d, J = 7.8 Hz, 8 H), 8.87 (s, 8 H). 13C NMR (75 MHz, CDCl3 + DMSO-d 6): δ = 14.0, 22.5, 23.7, 29.6, 31.4, 40.2, 54.6, 55.1, 62.1, 112.6, 119.9, 120.1, 120.2, 122.5, 122.7, 122.9, 126.9, 127.0, 127.5, 131.6, 132.9, 135.5, 136.4, 140.1, 141.9, 150.2, 150.8, 151.8, 157.7. MS (MALDI-TOF): m/z = 2476 [M + Na]+. Anal. Calcd For C160H176N16O4Zn: C, 78.35; H, 7.23; N, 9.14. Found: C, 78.23; H, 7.11; N, 9.2.