Synlett 2018; 29(20): 2601-2607
DOI: 10.1055/s-0037-1610256
synpacts
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Construction of Halogenated Cyclic Quaternary Carbon Center through Enolate Activation of Aldehydes

Qing-Zhu Li
,
Yue Liu
,
Hai-Jun Leng
,
Jun-Long Li*
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. of China   Email: lijunlong709@hotmail.com
› Author Affiliations
We are grateful for the financial support from the NSFC (21502009, 21702021 and 81573588), the Science & Technology Department of Sichuan Province (2017JQ0032), ‘Thousand Talents Program’ of Sichuan Province, ‘Chengdu Talents Program’, and the Start-up Fund of Chengdu University.
Further Information

Publication History

Received: 04 June 2018

Accepted after revision: 27 July 2018

Publication Date:
31 August 2018 (online)

Abstract

The construction of a chiral halogenated cyclic quaternary carbon center through various catalytic strategies is an emerging hot topic in the field of asymmetric synthesis. Herein, we give a summary of recently developed synthetic methods for preparing such structures. In addition, a novel enolate activation mode of aldehydes is highlighted, which provides an elegant pathway to access enantiopure heterocycles featuring a halogenated quaternary stereocenter through organocatalytic [4+2] cycloaddition.

 
  • References


    • For selected examples, see:
    • 1a Fuller RW. Cardellina II JH. Kato Y. Brinen LS. Clardy J. Snader KM. Boyd MR. J. Med. Chem. 1992; 35: 3007
    • 1b Shiomi K. Iinuma H. Hamada M. Naganawa H. Manabe M. Matsuki C. Takeuchi T. Umezawa H. J. Antibiot. 1986; 39: 487
    • 1c Miyamoto T. Ebisawa Y. Higuchi R. Tetrahedron Lett. 1995; 36: 6073
    • 1d Hazen SL. Hsu FF. Duffin K. Heinecke JW. J. Biol. Chem. 1996; 271: 23080
    • 1e Macko V. Stimmel MB. Wolpert TJ. Dunkle LD. Acklin W. Bänteli R. Jaun B. Arigoni D. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 9574

      For reviews on transition-metal-catalyzed halogenation, see:
    • 2a Smith AM. R. Hii KK. Chem. Rev. 2011; 111: 1637
    • 2b Petrone DA. Ye J. Lautens M. Chem. Rev. 2016; 116: 8003

    • For recent reviews on enzyme-catalyzed halogenation, see:
    • 2c Agarwal V. Miles ZD. Winter JM. Eustáquio AS. Gamal AA. El. Moore BS. Chem. Rev. 2017; 117: 5619
    • 2d Latham J. Brandenburger E. Shepherd SA. Menon BR. K. Micklefield J. Chem. Rev. 2017; 118: 232

    • For selected pioneering works on organocatalyzed halogenation, see:
    • 2e Marigo M. Bachmann S. Halland N. Braunton A. Jørgensen KA. Angew. Chem. Int. Ed. 2004; 43: 5507
    • 2f Brochu MP. Brown SP. MacMillan DW. C. J. Am. Chem. Soc. 2004; 126: 4108
    • 2g Halland N. Braunton A. Bachmann S. Marigo M. Jørgensen KA. J. Am. Chem. Soc. 2004; 126: 4790
    • 2h Marigo M. Fielenbach D. Braunton A. Kjoersgaard A. Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 3703
    • 2i Shibatomi K. Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 5796
    • 2j Kano T. Ueda M. Maruoka K. J. Am. Chem. Soc. 2008; 130: 3728

      For selected examples, see:
    • 3a Bartoli G. Bosco M. Carlone A. Locatelli M. Melchiorre P. Sambri L. Angew. Chem. Int. Ed. 2005; 44: 6219
    • 3b Etayo P. Badorrey R. Díaz-de-Villegas MD. Gálvez JA. Adv. Synth. Catal. 2010; 352: 3329
    • 3c Zhao M.-X. Zhang Z.-W. Chen M.-X. Tang W.-H. Shi M. Eur. J. Org. Chem. 2011; 3001
    • 3d Gao X. Han J. Wang L. Org. Lett. 2015; 17: 4596
    • 3e Yin Q. Wang S.-G. Liang X.-W. Gao D.-W. Zheng J. You S.-L. Chem. Sci. 2015; 6: 4179
    • 3f Luo J. Wu W. Xu LW. Meng Y. Lu Y. Tetrahedron Lett. 2013; 54: 2623
    • 3g Shirakawa S. Tokuda T. Kasai A. Maruoka K. Org. Lett. 2013; 15: 3350
    • 3h Cai Y. Wang W. Shen K. Wang J. Hu X. Lin L. Liu X. Feng X. Chem. Commun. 2010; 46: 1250
    • 3i Liu RY. Wasa M. Jacobsen EN. Tetrahedron Lett. 2015; 56: 3428
  • 4 Shibatomi K. Kitahara K. Sasaki N. Kawasaki Y. Fujisawa I. Iwasa S. Nat. Commun. 2017; 8: 15600
  • 5 Trost BM. Saget T. Hung C.-I. Angew. Chem. Int. Ed. 2017; 56: 2440
  • 6 Noole A. Järving I. Werner F. Lopp M. Malkov A. Kanger T. Org. Lett. 2012; 14: 4922
  • 7 Momiyama N. Funayama K. Noda H. Yamanaka M. Akasaka N. Ishida S. Iwamoto T. Terada M. ACS Catal. 2016; 6: 949
  • 8 Lefranc A. Guénée L. Alexakis A. Org. Lett. 2013; 15: 2172

    • For selected reviews on asymmetric cycloadditions, see:
    • 9a Moyano A. Rios R. Chem. Rev. 2011; 111: 4703
    • 9b Li J.-L. Liu T.-Y. Chen Y.-C. Acc. Chem. Res. 2012; 45: 1491
    • 9c Klier L. Tur F. Poulsen PH. Jørgensen KA. Chem. Soc. Rev. 2017; 46: 1080

      For our recent contributions to organocatalysis, see:
    • 10a Li J.-L. Yang K.-C. Li Y. Li Q. Zhu H.-P. Han B. Peng C. Zhi Y.-G. Gou X.-J. Chem. Commun. 2016; 52: 10617
    • 10b Li J.-L. Fu L. Wu J. Yang K.-C. Li Q.-Z. Gou X.-J. Peng C. Han B. Shen X.-D. Chem. Commun. 2017; 53: 6875
    • 10c Leng H.-J. Li Q.-Z. Zeng R. Dai Q.-S. Zhu H.-P. Liu Y. Huang W. Han B. Li J.-L. Adv. Synth. Catal. 2018; 360: 229
    • 10d Li Q.-Z. Zhang X. Zeng R. Dai Q.-S. Liu Y. Shen X.-D. Leng H.-J. Yang K.-C. Li J.-L. Org. Lett. 2018; 20: 3700
  • 11 Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev. 2007; 107: 5471 ; and the references therein and related to this review
  • 12 Erkkilä A. Majander I. Pihko PM. Chem. Rev. 2007; 107: 5416 ; and the references therein and related to this review
  • 13 For a pioneering work on SOMO activation, see: Beeson TD. Mastracchio A. Hong JB. Ashton K. MacMillan DW. C. Science 2007; 316: 582

    • For selected recent reviews, see:
    • 14a Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
    • 14b Hopkinson MN. Richter C. Schedler M. Glorius F. Nature 2014; 510: 485

      For a review discussed on this issue, see:
    • 15a Zhang L. Fu N. Luo S. Acc. Chem. Res. 2015; 48: 986

    • For few examples on enamine activation of α-chloroaldehydes, but only highly reactive electrophiles were used, and the scope was quite limited, see:
    • 15b Shibatomi K. Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 5796
    • 15c Quintard A. Alexakis A. Chem. Commun. 2010; 46: 4085
    • 16a Wright TB. Evans PA. J. Am. Chem. Soc. 2016; 138: 15303
    • 16b Bernhard Y. Thomson B. Ferey V. Sauthier M. Angew. Chem. Int. Ed. 2017; 56: 7460
  • 17 Xie J.-K. Wang Y. Lin J.-B. Ren X.-R. Xu P.-F. Chem. Eur. J. 2017; 23: 6752
  • 18 Li Q. Zhou L. Shen X.-D. Yang K.-C. Zhang X. Dai Q.-S. Leng H.-J. Li Q.-Z. Li J.-L. Angew. Chem. Int. Ed. 2018; 57: 1913
  • 19 Li H. Li X. Zhao Z. Ma T. Sun C. Yang B. Chem. Commun. 2016; 52: 10167

    • For reviews, see:
    • 20a Peterson EA. Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11943
    • 20b Long R. Huang J. Gong JX. Yang Z. Nat. Prod. Rep. 2015; 32: 1584
    • 20c Büschleb M. Dorich S. Hanessian S. Tao D. Schenthal KB. Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156