Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(20): 2697-2700
DOI: 10.1055/s-0037-1610306
DOI: 10.1055/s-0037-1610306
letter
Metal-Free Synthesis of α-Aminophosphonates from Tertiary Amines and P(O)H Compounds via a Cross-Dehydrogenative Coupling Reaction
Authors
We acknowledge financial support from the NSFC (21772163, 21778042, 41876072), NFFTBS (J1310024) and the Fundamental Research Funds for the Central Universities (20720160030).
Further Information
Publication History
Received: 23 August 2018
Accepted after revision: 21 September 2018
Publication Date:
16 October 2018 (online)

Abstract
The various α-aminophosphonates have been prepared from tertiary aromatic and aliphatic amines with P(O)H compounds via a tert-butyl hydroperoxide mediated cross-dehydrogenative coupling reaction, eliminating the need for transition-metal catalysts. The oxidation of tertiary amine by tert-butyl hydroperoxide generates an iminium cation intermediate. A further addition of P(O)H compound to iminium cation gives the desired product.
Key words
tert-butyl hydroperoxide - α-aminophosphonates - tertiary aromatic amines - tertiary aliphatic amines - dialkyl H-phosphonateSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610306.
- Supporting Information (PDF)
-
References and Notes
- 1a Mucha A. Kafarski P. Berlicki Ł. J. Med. Chem. 2011; 54: 5955
- 1b Culcasi M. Casano G. Lucchesi C. Mercier A. Clément J.-L. Pique V. Michelet L. Krieger-Liszkay A. Robin M. Pietri S. J. Med. Chem. 2013; 56: 2487
- 1c Vassiliou S. Węglarz-Tomczak E. Berlicki Ł. Pawełczak M. Nocek B. Mulligan R. Joachimiak A. Mucha A. J. Med. Chem. 2014; 57: 8140
- 2a Pudovik AN. Dokl. Akad. Nauk SSSR 1952; 83: 865
- 2b Fields EK. J. Am. Chem. Soc. 1952; 74: 1528
- 2c Kabachnik MI. Medved TYa. Dokl. Akad. Nauk SSSR 1952; 83: 689
- 3a Reddy BR. P. Reddy PV. G. Reddy BN. New J. Chem. 2015; 39: 9605
- 3b Sheykhan M. Mohammadnejad H. Akbari J. Heydari A. Tetrahedron Lett. 2012; 53: 2959
- 3c Kalla RM. N. Bae J. Kim I. New J. Chem. 2017; 41: 6653
- 3d Mirzaei M. Eshghi H. Rahimizadeh M. Bakavoli M. Matin MM. Hosseinymehr M. Rudbari HA. Bruno G. J. Chin. Chem. Soc. 2015; 62: 1087
- 3e Azizi K. Karimi M. Heydari A. Tetrahedron Lett. 2014; 55: 7236
- 3f Kaboudin B. Karami L. Kato J. Aoyama H. Yokomatsu T. Tetrahedron Lett. 2013; 54: 4872
- 4 Mumford PM. Tarver GJ. Shipman M. J. Org. Chem. 2009; 74: 3573
- 5 Gao Y. Huang Z. Zhuang R. Xu J. Zhang P. Tang G. Zhao Y. Org. Lett. 2013; 15: 4214
- 6a Basle O. Li C. Chem. Commun. 2009; 4124
- 6b Rueping M. Zhu S. Koenigs RM. Chem. Commun. 2011; 8679
- 6c Hari DP. König B. Org. Lett. 2011; 13: 3852
- 6d Dhineshkumar J. Samaddar P. Prabhu KR. ACS Omega 2017; 2: 4885
- 6e Liu Y. Wang C. Xue D. Xiao M. Li C. Xiao J. Chem. Eur. J. 2017; 23: 3051
- 6f Zhang Z. Gu K. Bao Z. Xing H. Yang Q. Ren Q. Tetrahedron 2017; 73: 3118
- 6g Gu K. Zhang Z. Bao Z. Xing H. Yang Q. Ren Q. Eur. J. Org. Chem. 2016; 3939
- 6h Ke XS. Ning Y. Tang J. Hu JY. Yin HY. Wang GX. Yang ZS. Jie J. Liu K. Meng ZS. Zhang Z. Su H. Shu C. Zhang JL. Chem. Eur. J. 2016; 22: 9676
- 6i Patil MR. Dedhia NP. Kapdi AR. Kumar AV. J. Org. Chem. 2018; 83: 4477
- 6j Han W. Mayer P. Ofial AR. Adv. Synth. Catal. 2010; 352: 1667
- 6k Han W. Ofial AR. Chem. Commun. 2009; 6023
- 6l Effenberger F. Kottmann H. Tetrahedron 1985; 41: 4171
- 7 Sun H. Su FZ. Ni J. Cao Y. He HY. Fan KN. Angew. Chem. Int. Ed. 2009; 48: 4390
- 8 Shi L. Xia W. Chem. Soc. Rev. 2012; 41: 7687
- 9 Lin B. Shi S. Lin R. Cui Y. Fang M. Tang G. Zhao Y. J. Org. Chem. 2018; 83: 6754
- 10 Garrett CE. Prasad K. Adv. Synth. Catal. 2004; 346: 889
- 11a Zhang P. Ying J. Tang G. Zhao Y. Org. Chem. Front. 2017; 4: 2054
- 11b Gao Y. Lu G. Zhang P. Zhang L. Tang G. Zhao Y. Org. Lett. 2016; 18: 1242
- 11c Chen S. Zhang P. Shu W. Gao Y. Tang G. Zhao Y. Org. Lett. 2016; 18: 5712
- 11d Zhang P. Gao Y. Zhang L. Li Z. Liu Y. Tang G. Zhao Y. Adv. Synth. Catal. 2016; 358: 138
- 12 Ueda H. Yoshida K. Tokuyama H. Org. Lett. 2014; 16: 4194
- 13a Berger O. Montchamp JL. Chem. Rec. 2017; 17: 1203
- 13b Pan X.-Q. Zou J.-P. Yi W.-B. Zhang W. Tetrahedron 2015; 71: 7481
- 13c Xu J. Zhang P. Li X. Gao Y. Wu J. Tang G. Zhao Y. Adv. Synth. Catal. 2014; 356: 3331
- 13d Xu J. Yu X. Song Q. Org. Lett. 2017; 19: 980
- 14 Pacheco JC. O. Lipp A. Nauth AM. Acke F. Dietz J.-P. Opatz T. Chem. Eur. J. 2016; 22: 5409
- 15 Experimental Procedure for the Synthesis of α-Aminophosphonate 3: Tributylamine (1; 1.5 mmol, 3 equiv), diethyl H-phosphonate (2; 0.5 mmol, 1 equiv), TBHP (1 or 2 equiv, 70% in water) and MeCN (2.5 mL) were sequentially placed in a round-bottom flask at room temperature. The reaction mixture was heated at 80 °C with stirring under an argon atmosphere for 24 hours. Upon completion, the reaction mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (20:1 to 2:1, v/v) as eluent to give the corresponding product 3 (CAS no: 875228-32-3) (ref. 9) as a light-yellow oil (144.5 mg, 90%). 1H NMR (500 MHz, CDCl3): δ = 4.07–3.98 (m, 4 H), 2.89–2.83 (m, 1 H), 2.63–2.49 (m, 4 H), 1.55–1.48 (m, 3 H), 1.33–1.17 (m, 15 H), 0.87–0.80 (m, 9 H). 13C NMR (125 MHz, CDCl3): δ = 61.5 (d, J = 7.4 Hz), 60.8 (d, J = 7.8 Hz), 58.3 (d, J = 134.0 Hz), 51.7 (d, J = 3.5 Hz), 31.7 (s), 29.9 (d, J = 7.2 Hz), 20.4 (d, J = 12.7 Hz), 20.3 (s), 16.6 (d, J = 5.4 Hz), 16.5 (d, J = 5.9 Hz), 14.1 (s), 13.9 (s). 31P NMR (202 MHz, CDCl3): δ = 29.7. HRMS: m/z [M+Na]+ calcd for C16H36NNaO3P+: 344.2325; found: 344.2326.
Selected publications within the last five years:
Pioneering works:
Selected publications. α-Phosphonyl N-aryltetrahydroisoquinolines:
α-Phosphonyl N,N-dialkylanilines: