Synlett 2019; 30(03): 257-262
DOI: 10.1055/s-0037-1610338
synpacts
© Georg Thieme Verlag Stuttgart · New York

Hypervalent Iodine Chemistry as a Platform for Aerobic Oxidation Catalysis

Asim Maity
,
Department of Chemistry, Texas A&M University, 3255 TAMU, 580 Ross St, College Station, Texas 77843, USA   Email: david.powers@chem.tamu.edu
› Author Affiliations
The authors thank Texas A&M University and the Welch Foundation (A-1907) for financial support.
Further Information

Publication History

Received: 12 October 2018

Accepted after revision: 05 November 2018

Publication Date:
11 December 2018 (online)


Abstract

Here, we highlight the recent development of aerobic oxidation catalysis via hypervalent I(III) and I(V) intermediates. The described chemistry intercepts reactive intermediates generated during aldehyde autoxidation to accomplish the oxidation of aryl iodides. The aerobically generated hypervalent iodine intermediates are utilized to couple an array of substrate functionalization chemistry to the reduction of O2.

1 Introduction

2 Chemistry of Aerobically Generated I(III) Intermediates

3 Chemistry of Aerobically Generated I(V) Intermediates

4 Conclusions

 
  • References

  • 1 Cavani F, Teles JH. ChemSusChem 2009; 2: 508
  • 2 Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
  • 3 Wertz S, Studer A. Green Chem. 2013; 15: 3116
  • 4 Filatov M, Reckien W, Peyerimhoff SD, Shaik S. J. Phys. Chem. A 2000; 104: 12014
  • 5 Borden WT, Hoffmann R, Stuyver T, Chen B. J. Am. Chem. Soc. 2017; 139: 9010
  • 6 Denekamp IM, Antens M, Slot TK, Rothenberg G. ChemCatChem 2018; 10: 1035
  • 7 Ho RY. N, Liebman JF, Valentine JS. Overview of the Energetics and Reactivity of Oxygen . In Active Oxygen in Chemistry . Foote CS, Valentine JS, Greenberg A, Liebman JF. Blackie Academic and Professional; New York: 1995: 1-23
  • 8 McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756
  • 9 Bäckvall J.-E, Hopkins RB, Grennberg H, Mader MM, Awasthi AK. J. Am. Chem. Soc. 1990; 112: 5160
  • 10 Bäckvall J.-E, Awasthi AK, Renko ZD. J. Am. Chem. Soc. 1987; 109: 4750
  • 11 Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
  • 12 Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
  • 13 Gligorich KM, Sigman MS. Chem. Commun. 2009; 3854
  • 14 Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007; 46: 1910
  • 15 Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
  • 16 Ryland BL, Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
  • 17 Melone L, Punta C. Beilstein J. Org. Chem. 2013; 9: 1296
  • 18 Yokota T, Sakaguchi S, Ishii Y. Adv. Synth. Catal. 2002; 344: 849
  • 19 Burton HA, Kozhevnikov IV. J. Mol. Catal. A: Chem. 2002; 185: 285
  • 20 Stowers KJ, Fortner KC, Sanford MS. J. Am. Chem. Soc. 2011; 133: 6541
  • 21 Obora Y, Ishii Y. Molecules 2010; 15: 1487
  • 22 Yokota T, Fujibayashi S, Nishiyama Y, Sakaguchi S, Ishii Y. J. Mol. Catal. A: Chem. 1996; 114: 113
  • 23 Bergstad K, Bäckvall J.-E. J. Org. Chem. 1998; 63: 6650
  • 24 Chan DM. T, Monaco KL, Wang RP, Winters MP. Tetrahedron Lett. 1998; 39: 2933
  • 25 Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
  • 26 Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
  • 27 Antilla JC, Buchwald SL. Org. Lett. 2001; 3: 2077
  • 28 King AE, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2009; 131: 5044
  • 29 Semmelhack MF, Schmid CR, Cortés DA, Chou CS. J. Am. Chem. Soc. 1984; 106: 3374
  • 30 Markó IE, Giles PR, Tsukazaki M, Brown SM, Urch CJ. Science 1996; 274: 2044
  • 31 McCann SD, Stahl SS. J. Am. Chem. Soc. 2016; 138: 199
  • 32 Ryland BL, McCann SD, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2014; 136: 12166
  • 33 Wang WX, Liang AD, Lippard SJ. Acc. Chem. Res. 2015; 48: 2632
  • 34 Bilgrien C, Davis S, Drago RS. J. Am. Chem. Soc. 1987; 109: 3786
  • 35 Bäckvall J.-E, Chowdhury RL, Karlsson U. J. Chem. Soc., Chem. Commun. 1991; 473
  • 36 Markó IE, Giles PR, Tsukazaki M, Chellé-Regnaut I, Urch CJ, Brown SM. J. Am. Chem. Soc. 1997; 119: 12661
  • 37 Csjernyik G, Éll AH, Fadini L, Pugin B, Bäckvall J.-E. J. Org. Chem. 2002; 67: 1657
  • 38 Samec JS. M, Éll AH, Bäckvall J.-E. Chem. Eur. J. 2005; 11: 2327
  • 39 Meunier B, de Visser SP, Shaik S. Chem. Rev. 2004; 104: 3947
  • 40 Poulos TL, Finzel BC, Howard AJ. J. Mol. Biol. 1987; 195: 687
  • 41 Rittle J, Green MT. Science 2010; 330: 933
  • 42 Basch H, Mogi K, Musaev DG, Morokuma K. J. Am. Chem. Soc. 1999; 121: 7249
  • 43 Liu KE, Valentine AM, Qiu D, Edmondson DE, Appelman EH, Spiro TG, Lippard SJ. J. Am. Chem. Soc. 1995; 117: 4997
  • 44 Silva F, Tierno AF, Wengryniuk SE. Molecules 2017; 22: 780
  • 45 Zhdankin VV, Muniz K. J. Org. Chem. 2017; 82: 11667
  • 46 Willgerodt C. J. Prakt. Chem. 1886; 33: 154
  • 47 Hach RJ, Rundle RE. J. Am. Chem. Soc. 1951; 73: 4321
  • 48 Pimentel GC. J. Chem. Phys. 1951; 19: 446
  • 49 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 50 Singh FV, Wirth T. Oxidative Functionalization with Hypervalent Halides . In Comprehensive Organic Chemistry II . Knochel P. Elsevier; Amsterdam: 2014. 2nd Ed. 880-933
  • 51 Brand JP, González DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
  • 52 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
  • 53 Yoshimura A, Yusubov MS, Zhdankin VV. Org. Biomol. Chem. 2016; 14: 4771
  • 54 Yusubov MS, Yoshimura A, Zhdankin VV. ARKIVOC 2016; (i): 342
  • 55 Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
  • 56 Reich L, Stivala SS. Autoxidation of Hydrocarbons and Polyolefins . Marcel Dekker, Inc; New York: 1969
  • 57 Wöhler F, von Liebig JF. Liebigs Ann. 1832; 3: 249
  • 58 Bäckström HL. J. J. Am. Chem. Soc. 1927; 49: 1460
  • 59 Maity A, Hyun SM, Powers DC. Nat. Chem. 2018; 10: 200
  • 60 Larkin DR. J. Org. Chem. 1990; 55: 1563
  • 61 Lehtinen C, Brunow G. Org. Process Res. Dev. 2000; 4: 544
  • 62 Miyamoto K, Yamashita J, Narita S, Sakai Y, Hirano K, Saito T, Wang C, Ochiai M, Uchiyama M. Chem. Commun. 2017; 53: 9781
  • 63 Frigerio M, Santagostino M, Sputore S, Palmisano G. J. Org. Chem. 1995; 60: 7272
  • 64 Frigerio M, Santagostino M. Tetrahedron Lett. 1994; 35: 8019
  • 65 DeMunari S, Frigerio M, Santagostino M. J. Org. Chem. 1996; 61: 9272
  • 66 Corey EJ, Palani A. Tetrahedron Lett. 1995; 36: 7945
  • 67 Corey EJ, Palani A. Tetrahedron Lett. 1995; 36: 3485
  • 68 Nicolaou KC, Mathison CJ. N, Montagnon T. J. Am. Chem. Soc. 2004; 126: 5192
  • 69 Nicolaou KC, Montagnon T, Baran PS. Angew. Chem. Int. Ed. 2002; 114: 1035
  • 70 Nicolaou KC, Montagnon T, Baran PS, Zhong YL. J. Am. Chem. Soc. 2002; 124: 2245
  • 71 Nicolaou KC, Zhong YL, Baran PS. J. Am. Chem. Soc. 2000; 122: 7596
  • 72 Nicolaou KC, Baran PS, Zhong YL. J. Am. Chem. Soc. 2001; 123: 3183
  • 73 Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
  • 74 Zhdankin VV. J. Org. Chem. 2011; 76: 1185
  • 75 Wirth T. Oxidations and Rearrangements. In Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. Vol. 224. Wirth T. Springer-Verlag; Berlin: 2003: 185-208
  • 76 Varvoglis A. Hypervalent Iodine in Organic Synthesis . Academic Press; London: 1997
  • 77 Hartmann C, Meyer V. Chem. Ber. 1893; 26: 1727
  • 78 Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
  • 79 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
  • 80 Soldatova N, Postnikov P, Troyan AA, Yoshimura A, Yusubov MS, Zhdankin VV. Tetrahedron Lett. 2016; 57: 4254
  • 81 Koposov AY, Karimov RR, Pronin AA, Skrupskaya T, Yusubov MS, Zhdankin VV. J. Org. Chem. 2006; 71: 9912
  • 82 Lucas HJ, Kennedy ER. Org. Synth. 1942; 22: 72
  • 83 Macikenas D, Skrzypczak-Jankun E, Protasiewicz JD. J. Am. Chem. Soc. 1999; 121: 7164
  • 84 Maity A, Hyun SM, Wortman AK, Powers DC. Angew. Chem. Int. Ed. 2018; 57: 7205