Subscribe to RSS
DOI: 10.1055/s-0037-1610339
Pd-Catalyzed C–H Silylation Reactions with Disilanes
The work was supported by the National Natural Science Foundation of China (21372176 and 21672162) and Shanghai Science and Technology Commission (14DZ2261100).
Publication History
Received: 09 October 2018
Accepted after revision: 29 October 2018
Publication Date:
18 December 2018 (online)

Abstract
Pd-catalyzed C–H silylation reactions remain underdeveloped. General strategies usually rely on the use of complex bidentate directing groups. C,C-Palladacycles exhibit extremely high reactivity towards hexamethyldisilane and can be disilylated very efficiently. The C,C-palladacycles are prepared through halide-directed C–H activation. This account introduces Pd-catalyzed C–H silylation reactions with disilanes as the silyl source, and is focused on studies on the silylation of C,C-palladacycles.
1 Introduction and Background
2 Allylic C–H Silylation Reaction
3 Coordinating-Ligand-Directed C–H Silylation Reaction
4 Disilylation of C(sp2),C(sp2)-Palladacycles That are Generated by C(sp2)–H activation
5 Disilylation of C(sp2),C(sp3)-Palladacycles That are Generated by C(sp3)–H Activation
6 Disilylation of C,C-Palladacycles That are Generated through Domino Processes
7 Summary and Outlook
-
References
- 1a Silicon Polymers . Muzafarov AM. Springer; Heidelberg: 2011
- 1b Silicon-Containing Polymers . Jones RG, Ando W, Chojnowski J. Kluwer Academic; Dordrecht: 2000
- 2a Mortensen M, Husmann R, Veri E, Bolm C. Chem. Soc. Rev. 2009; 38: 1002
- 2b Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
- 3a Chemistry of Organosilicon Compounds . Rappoport Z, Apeloig Y. Wiley-VCH; New York: 2001
- 3b Silicon in Organic Organometallic and Polymer Chemistry . Brook MA. John Wiley and Sons; New York: 2000
- 5a Murata M, Ishikura M, Nagata M, Watanabe S, Masuda Y. Org. Lett. 2002; 4: 1843
- 5b Manoso AS, DeShong P. J. Org. Chem. 2001; 66: 7449
- 5c Denmark SE, Smith RC, Chang W.-TT, Muhuhi JM. J. Am. Chem. Soc. 2009; 131: 3104
- 5d Denmark SE, Kallemeyn JM. J. Am. Chem. Soc. 2006; 128: 15958
- 6a C–H Activation . Yu J.-Q, Shi Z. Springer; Heidelberg: 2010
- 6b Zhang Y, Shi G, Yu J-Q. In Comprehensive Organic Synthesis . Molander G, Knochel P. Elsevier; Oxford: 2014. 2nd ed., Vol. 3 1101-1209
- 6c Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 6d Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 6e Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
- 6f Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 6g Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 6h Baudoin O. Acc. Chem. Res. 2017; 50: 1114
- 6i Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
- 7a Cheng C, Hartwig JF. Chem. Rev. 2015; 115: 8946
- 7b Sharma R, Kumar R, Kumar I, Singh B, Sharma U. Synthesis 2015; 47: 2347
- 8a Hartwig JF. Acc. Chem. Res. 2012; 45: 864
- 8b Marciniec B. Acc. Chem. Res. 2007; 40: 943
- 8c Lee KS, Katsoulis D, Choi J. ACS Catal. 2016; 6: 1493
- 9a Klare HF. T, Oestreich M, Ito J, Nishiyama H, Ohki Y, Tatsumi K. J. Am. Chem. Soc. 2011; 133: 3312
- 9b Kakiuchi F, Matsumoto M, Sonoda M, Fukuyama T, Chatani N, Murai S, Furukawa N, Seki Y. Chem. Lett. 2000; 750
- 9c Murai M, Takami K, Takai K. Chem. Eur. J. 2015; 21: 4566
- 9d Zarate C, Martin R. J. Am. Chem. Soc. 2014; 136: 2236
- 9e Ishiyama T, Sato K, Nishio Y, Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 5346
- 9f Tsukada N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022
- 10 Larsson JM, Zhao TS. N, Szabo KJ. Org. Lett. 2011; 13: 1888
- 11 Nakai S, Matsui M, Shimizu Y, Adachi Y, Obora Y. J. Org. Chem. 2015; 80: 7317
- 12a Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
- 12b Thomas WL, Melanie SS. Chem. Rev. 2010; 110: 1147
- 12c Dick A, Hull K, Sanford M. J. Am. Chem. Soc. 2004; 126: 2300
- 12d Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 12e Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 13 Kanyiva K, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968
- 14a Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 14b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
- 14c Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 14d He G, Zhang S.-Y, Nark WA, Li Q, Chen G. Angew. Chem. Int. Ed. 2013; 52: 11124
- 14e Chen K, Li X, Zhang S.-Q, Shi B.-F. Chem. Commun. 2016; 52: 1915
- 14f Pan F, Shen P.-X, Zhang L.-S, Wang X, Shi Z.-J. Org. Lett. 2013; 15: 4758
- 15 Chen CP, Guan MY, Zhang JY, Wen ZK, Zhao YS. Org. Lett. 2015; 17: 3646
- 16 Pan J.-L, Chen C, Ma Z.-G, Zhou J, Wang L.-R, Zhang S.-Y. Org. Lett. 2017; 19: 5216
- 17 Liu YJ, Liu YH, Zhang ZZ, Yan SY, Chen K, Shi BF. Angew. Chem. Int. Ed. 2016; 55: 13859
- 18 Pan J.-L, Li Q.-Z, Zhang T.-Y, Hou S.-H, Kang J.-C, Zhang S.-Y. Chem. Commun. 2016; 52: 13151
- 19a Tang R.-Y, Li G, Yu J.-Q. Nature 2014; 507: 215
- 19b Chu L, Shang M, Tanaka K, Chen Q, Pissarnitski N, Streckfuss E, Yu J.-Q. ACS Cent. Sci. 2015; 1: 394
- 19c Deng Y, Yu J.-Q. Angew. Chem. Int. Ed. 2015; 54: 888
- 19d Dai H.-X, Li G, Zhang X.-G, Stepan AF, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567
- 19e Bera M, Modak A, Patra T, Maji A, Maiti D. Org. Lett. 2014; 16: 5760
- 19f Bera M, Maji A, Sahoo SK, Maiti D. Angew. Chem. Int. Ed. 2015; 54: 8515
- 19g Li S, Ji H, Cai L, Li G. Chem. Sci. 2015; 6: 5595
- 19h Li S, Cai L, Ji H, Yang L, Li G. Nat. Commun. 2016; 7: 10443
- 19i Lee S, Lee H, Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
- 20 Modak A, Patra T, Chowdhury R, Raul S, Maiti D. Organometallics 2017; 36: 2418
- 21a Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
- 21b Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
- 22a Jiang H, Zhang Y, Chen D, Zhou B, Zhang Y. Org. Lett. 2016; 18: 2032
- 22b Chen D, Shi G, Jiang H, Zhang Y, Zhang Y. Org. Lett. 2016; 18: 2130
- 22c Shi G, Chen D, Jiang H, Zhang Y, Zhang Y. Org. Lett. 2016; 18: 2958
- 22d Wu Z, Ma D, Zhou B, Ji X, Ma X, Wang X, Zhang Y. Angew. Chem. Int. Ed. 2017; 56: 12288
- 22e Shao C, Wu Z, Ji X, Zhou B, Zhang Y. Chem. Commun. 2017; 53: 10429
- 22f Shao C, Zhou B, Wu Z, Ji X, Zhang Y. Adv. Synth. Catal. 2017; 360: 887
- 22g Ma D, Shi G, Wu Z, Ji X, Zhang Y. J. Org. Chem. 2018; 83: 1065
- 22h Pan S, Jiang H, Zhang Y, Chen D, Zhang Y. Org. Lett. 2016; 18: 5192
- 23 Lu A, Ji X, Zhou B, Wu Z, Zhang Y. Angew. Chem. Int. Ed. 2018; 57: 1
- 24 Ma X, Lu A, Ji X, Shi G, Zhang Y. Asian J. Org. Chem. 2018; 7: 1403
- 25 Li W, Xiao G, Deng G, Liang Y. Org. Chem. Front. 2018; 5: 1488
- 26a Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J.-L, Clot E, Baudoin O. J. Am. Chem. Soc. 2008; 130: 15157
- 26b Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
- 26c Yan J.-X, Li H, Liu X.-W, Shi J.-L, Wang X, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 4945
- 26d Wang M, Zhang X, Zhuang Y.-X, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 1341
- 27a Tietze LF, Beifuss U. Angew. Chem. Int. Ed. Engl. 1993; 32: 131
- 27b Tietze LF. Chem. Rev. 1996; 96: 115
- 27c Tietze LF, Modi A. Med. Res. Rev. 2000; 20: 304
- 27d Domino Reactions in Organic Synthesis . Tietze LF, Brasche G, Gericke KM. Wiley-VCH; Weinheim: 2009
- 27e Tietze LF, Dufert A. Pure Appl. Chem. 2010; 82: 1375
- 28a Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
- 28b Martins A, Mariampillai B, Lautens M. Top. Curr. Chem. 2010; 292: 1
- 28c Juntao Y, Mark L. Nat. Chem. 2015; 7: 863
- 28d Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
- 29 Lv W, Wen S, Yu J, Cheng G. Org. Lett. 2018; 20: 4984
- 30 Xiao G, Chen L, Deng G, Liu J, Liang Y. Tetrahedron Lett. 2018; 59: 1836
- 31 Zhou B, Lu A, Shao C, Liang X, Zhang Y. Chem. Commun. 2018; 54: 10598
- 32 Schweicher G, Lemaur V, Niebel C, Ruzié C, Diao Y, Goto O, Lee W.-Y, Kim Y, Arlin J.-B, Karpinska J, Kennedy AR, Parkin SR, Olivier Y, Mannsfeld SC. B, Cornil J, Geerts YH, Bao Z. Adv. Mater. 2015; 27: 3066