CC BY 4.0 · SynOpen 2018; 02(03): 0229-0233
DOI: 10.1055/s-0037-1610360
letter
Copyright with the author

Aqueous Medium Preparation of Dialkyldiselenides

Tapasi Manna
,
Anup Kumar Misra*
Further Information

Publication History

Received: 20 April 2018

Accepted after revision: 26 May 2018

Publication Date:
19 July 2018 (online)


Abstract

One-pot, two-step reaction conditions have been developed for the preparation of dialkyl diselenides by the treatment of alkyl halides with potassium selenocyanate followed by alkaline hydrolysis of the in situ generated alkyl selenocyanate in water. The reaction is reasonably fast and the yields of the products were very good. Several functional groups present in the substrates were unaffected under the reaction conditions.

 
  • References and Notes

    • 1a Devillanova FA. Handbook of Chalcogen Chemistry - New Perspectives in Sulfur, Selenium and Tellurium. Royal Society of Chemistry; Cambridge: 2007
    • 1b Wirth T. Organoselenium Chemistry - Modern Developments in Organic Synthesis. Springer-Verlag; Heidelberg: 2000
    • 1c Derek WJ. Risto L. Selenium and Tellurium Chemistry-From Small Molecules to Biomolecules and Materials. Springer-Verlag; Berlin, Heidelberg: 2011
    • 1d Oae S. Organic Chemistry of Sulfur. Springer Science & Business Media; Berlin: 2012
    • 2a Nogueira CW. Zeni G. Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 2b Ibrahim M. Hassan W. Meinerz DF. Dos Santos M. Klimaczewski CV. Deobald AM. Costa MS. Noqueira CW. Barbosa NB. Rocha JB. Mol. Cell. Biochem. 2012; 371: 97
    • 2c Saito G. Swanson JA. Lee K.-D. Adv. Drug Delivery Rev. 2003; 55: 199
    • 2d Stefanello ST. Prestes AS. Ogunmoyole T. Salman SM. Schwab RS. Brender CR. Dornelles L. Rocha JB. T. Soares FA. A. Toxicol. in Vitro 2013; 27: 1433
    • 3a Mugesh G. duMont WW. Sies H. Chem. Rev. 2001; 101: 2125
    • 3b Geiger PG. Lin F. Girotti AW. Free Radical Biol. Med. 1993; 14: 251
    • 3c Stadtman TC. Annu. Rev. Biochem. 1980; 49: 93
    • 3d Gucchait A. Joardar N. Parida PK. Roy P. Mukherjee N. Dutta A. Yesuvadian R. SinhaBabu SP. Jana K. Misra AK. Eur. J. Med. Chem. 2018; 143: 598
    • 3e Plano D. Baquedano Y. Moreno-Mateos D. Font M. Jiménez-Ruiz A. Palop JA. Sanmartín C. Eur. J. Med. Chem. 2011; 46: 3315
    • 4a Guy RG. In The Chemistry of Cyanates and their Thio- Derivatives, Part 2. Patai S. John Wiley & Sons; New York: 1977. Chapter 18, p 819
    • 4b Erian AW. Sherif SM. Tetrahedron 1999; 55: 7957
    • 5a Klayman LD. Griffin TS. J. Am. Chem. Soc. 1973; 95: 197
    • 5b Lewicki JW. Günther WH. H. Chu JY. C. J. Org. Chem. 1978; 43: 2672
    • 5c Krief A. Van Wemmel T. Redon M. Dumont W. Delmotte C. Angew. Chem. Int. Ed. 1999; 38: 2245
    • 5d Doudin KI. Berge RK. Frøystein N. Å. Songstad J. J. Chem. Soc., Perkin Trans. 1 2000; 723
    • 6a Gladysz JA. Hornby JL. Garbe JE. J. Org. Chem. 1978; 43: 1204
    • 6b Salama P. Bernard C. Tetrahedron Lett. 1995; 36: 5711
    • 6c Syper L. Mlochowski J. Tetrahedron 1988; 44: 6119
  • 7 Li JQ. Bao WL. Lue P. Zhou X.-J. Synth. Commun. 1991; 21: 799
    • 8a Krief A. Delmotte C. Dumont W. Tetrahedron 1997; 53: 12147
    • 8b Krief A. Derock M. Tetrahedron Lett. 2002; 43: 3083
  • 9 Salama P. Bernard C. Tetrahedron Lett. 1998; 39: 745
  • 10 Singh D. Deobald AM. Camargo LR. S. Tabarelli G. Rodrigues OE. D. Braga AL. Org. Lett. 2010; 12: 3288
  • 11 Tian F. Yu Z. Lu S. J. Org. Chem. 2004; 69: 4520
  • 12 Wang J.-X. Cui W. Hu Y. J. Chem. Soc., Perkin Trans. 1 1994; 2341
  • 13 Krief A. De Mahieu AF. Dumont W. Trabelsi M. Synthesis 1988; 131
  • 14 Logan G. Igunbor C. Chen G.-X. Davis H. Simon A. Salon J. Huang Z. Synlett 2006; 1554
    • 15a Krief A. Dumont W. Delmotte C. Angew. Chem. Int. Ed. 2000; 39: 1669
    • 15b Mülar J. Terfort A. Inorg. Chim. Acta 2006; 359: 4821
    • 15c Heredia AA. Peñéñory AB. RSC Adv. 2015; 5: 105699
    • 15d Heredia AA. Peñéñory AB. Beilstein J. Org. Chem. 2017; 13: 910
  • 16 Yavuz S. Disli A. Yildirir Y. Türker L. Molecules 2005; 10: 1000
    • 17a Guan Y. Townsend SD. Org. Lett. 2017; 19: 5252
    • 17b Prabhu K. Chandrasekaran S. Chem. Commun. 1997; 1021
  • 18 Nishiyama Y. Hamanaka S. Ogawa A. Murai S. Sonoda N. Synth. Commun. 1986; 16: 1059
  • 19 Baker JW. Moffitt WG. J. Chem. Soc. 1930; 1722
  • 20 Anastas PT. Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; New York: 1998
    • 21a Freudendahl DM. Santoro S. Shahzad SA. Santi C. Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
    • 21b Santi C. Jacob RG. Monti B. Bagnoli L. Sancineto L. Lenardão EJ. Molecules 2016; 21: 1482
  • 22 Soleiman-Beigi M. Yavari I. Sadeghizadeh F. Phosphorus, Sulfur Silicon Relat. Elem. 2018; 193: 41
  • 23 Li Z. Ke F. Deng H. Xu H. Xiang H. Zhou X. Org. Biomol. Chem. 2013; 11: 2943
  • 25 General method for the preparation of dialkyl diselenides:To a solution of alkyl halide (1.0 mmol) in H2O (5 mL) were added TBAB (0.1 mmol) and KSeCN (1.05 mmol) and the reaction mixture was stirred vigorously at 65 °C for the time detailed in Table 1. K3PO4 (5.0 mmol) was then added and the mixture was stirred at 65 °C for the time detailed in Table 2. The reaction mixture was cooled and extracted with EtOAc (2 × 25 mL), and the organic layer was dried (Na2SO4), filtered and concentrated. Chromatographic purification of the crude product over SiO2 furnished pure products. Analytical data of known compounds match with the data reported in the literature.
  • 26 Analytical data of novel compounds:Di-(2-phenoxyethyl) diselenide (2h): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.29–7.21 (m, 4 H, Ar-H), 6.96–6.87 (m, 6 H, Ar-H), 4.22 (t, J = 7.0 Hz, 4 H, OCH2), 3.28 (t, J = 7.0 Hz, 4 H, SeCH2); 13C NMR (125 Hz, CDCl3): δ = 157.2–113.6 (Ar-C), 66.6 (2 C), 27.1 (2 C); ESI-MS: m/z = 402.9 [M+H]+; Anal. Calcd. for C16H18O2Se2 (401.96): C, 48.01; H, 4.53; found: C, 47.84; H, 4.75.Di-(2-(4-methoxyphenoxy)ethyl) diselenide (2i): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 6.86–6.74 (m, 8 H, Ar-H), 4.20 (t, J = 7.0 Hz, 4 H, OCH2), 3.76 (s, 6 H, OCH3), 3.25 (t, J = 7.0 Hz, 4 H, SeCH2); 13C NMR (125 Hz, CDCl3): δ = 153.0–113.6 (Ar-C), 67.4 (2 C), 54.5 (2 C, OCH3), 27.2 (2 C); ESI-MS: m/z = 462.9 [M+H]+; Anal. Calcd. for C18H22O4Se2 (461.98): C, 46.97; H, 4.82; found: C, 46.80; H, 5.00.Di-(2-(4-nitrophenoxy)ethyl) diselenide (2j): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 8.22–8.17 (m, 4 H, Ar-H), 6.98–6.92 (m, 4 H, Ar-H), 4.33 (t, J = 7.0 Hz, 4 H, OCH2), 3.30 (t, J = 7.0 Hz, 4 H, SeCH2); 13C NMR (125 Hz, CDCl3): δ = 162.0–113.4 (Ar-C), 67.3 (2 C), 26.2 (2 C); ESI-MS: m/z = 492.9 [M+H]+; Anal. Calcd. for C16H16N2O6Se2 (491.93): C, 39.20; H, 3.29; found: C, 39.00; H, 3.50.Di-(2-(2-naphthalenyloxy)ethyl) diselenide (2k): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.78–7.63 (m, 6 H, Ar-H), 7.42–7.37 (m, 2 H, Ar-H), 7.32–7.30 (m, 2 H, Ar-H), 7.14–7.08 (m, 4 H, Ar-H), 4.38 (t, J = 7.0 Hz, 4 H, OCH2), 3.36–3.31 (t, J = 7.0 Hz, 4 H, SeCH2); 13C NMR (125 Hz, CDCl3): δ = 155.2–105.9 (Ar-C), 66.7 (2 C), 27.0 (2 C); ESI-MS: m/z = 02.9 [M+H]+; Anal. Calcd. for C24H22O2Se2 (501.99): C, 57.61; H, 4.43; found: C, 57.45; H, 4.60.Di-(4-(phenylthio)butyl) diselenide (2l): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.31–7.13 (m, 10 H, Ar-H), 2.91 (t, J = 7.0 Hz, 4 H), 2.89 (t, J = 7.0 Hz, 4 H), 1.90–1.80 (m, 4 H), 1.79–1.71 (m, 4 H); 13C NMR (125 Hz, CDCl3): δ = 135.5-124.8 (Ar-C), 32.1 (2 C), 28.8 (2 C), 28.1 (2 C), 27.8 (2 C); ESI-MS: m/z = 490.9 [M+H]+; Anal. Calcd. for C20H26S2Se2 (488.47): C, 49.18; H, 5.37; found: C, 49.00; H, 5.58.
  • 27 Bis-(p-methoxyphenyl 2,3,4-tri-O-benzyl-β-d-glucopyranosyl)-(6,6′)-diselenide (2m): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.32–7.19 (m, 30 H, Ar-H), 7.01 (d, J = 9.0 Hz, 4 H, Ar-H), 6.77 (d, J = 9.0 Hz, 4 H, Ar-H), 5.04 (d, J = 11.0 Hz, 2 H, PhCH), 4.92 (d, J = 11.0 Hz, 2 H, PhCH), 4.84 (d, J = 11.0 Hz, 2 H, PhCH), 4.78 (d, J = 11.0 Hz, 2 H, PhCH), 4.75 (d, J = 7.5 Hz, 2 H, H-1, H-1′), 4.73 (d, J = 11.0 Hz, 2 H, PhCH), 4.58 (d, J = 11.0 Hz, 2 H, PhCH), 3.74 (s, 6 H, OCH3), 3.68–3.64 (m, 4 H, H-2, H-2′, H-3, H-3′), 3.62–3.57 (m, 2 H, H-5, H-5′), 3.42–3.38 (m, 2 H, H-4, H-4′), 3.37–3.34 (m, 2 H, H-6a, H-6′a), 3.12–3.06 (m, 2 H, H-6b, H-6′b); 13C NMR (125 Hz, CDCl3): δ = 155.37–114.5 (Ar-C), 102.8 (2 C, C-1, C-1′), 84.4 (2 C), 82.2 (2 C), 80.8 (2 C), 75.7 (2 C, PhCH2), 75.2 (2 C), 75.0 (2 C, PhCH2), 74.9 (2 C, PhCH2), 55.5 (2 C, OCH3), 33.3 (2 C, C-6, C-6′); ESI-MS: m/z = 261.3 [M+Na]+; Anal. Calcd. for C68H70O12Se2 (1238.31): C, 66.01; H, 5.70; found: C, 65.82; H, 5.54.Bis-(p-methoxyphenyl 2,3,4-tri-O-benzyl-β-d-galactopyranosyl)-(6,6′)-diselenide (2n): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.40–7.22 (m, 30 H, Ar-H), 7.06–7.04 (m, 4 H, Ar-H), 6.77–6.74 (m, 4 H, Ar-H), 5.27 (d, J = 3.0 Hz, 2 H, H-1, H-1′), 4.93–4.47 (m, 12 H, 6 PhCH2), 4.13–4.04 (m, 4 H, H-2, H-2′ and H-3, H-3′), 4.00–3.96 (m, 2 H, H-5, H-5′), 3.70 (br s, 6 H, 2 OCH3), 3.66 (br s, 2 H, H-4, H-4′), 3.07–3.03 (m, 2 H, H-6a, H-6′a), 2.72–2.68 (m, 2 H, H-6b, H-6′b); 13C NMR (125 Hz, CDCl3): δ = 155.2–114.5 (Ar-C), 98.3 (2 C, C-1, C-1′), 79.1 (2 C), 76.4 (2 C), 76.0 (2 C), 74.9 (2 C), 73.6 (2 C), 73.2 (2 C), 71.2 (2 C), 55.4 (2 C, OCH3), 30.6 (2 C, C-6, C-6′); ESI-MS: m/z = 261.3 [M+Na]+; Anal. Calcd. for C68H70O12Se2 (1238.31): C, 66.01; H, 5.70; found: C, 65.80; H, 5.55.Bis-(2,3-di-O-benzyloxy-(R)-propyl) diselenide (2o): Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.34–7.22 (m, 20 H, Ar-H), 4.63–4.48 (m, 8 H, PhCH2), 3.81–3.77 (m, 2 H), 3.62–3.56 (m, 4 H), 3.19–3.15 (m, 4 H); 13C NMR (125 Hz, CDCl3): δ = 138.2–127.6 (Ar-C), 78.0 (2 C), 73.4 (2 C), 72.0 (2 C), 71.3 (2 C), 32.4 (2 C), 29.7 (2 C); ESI-MS: m/z = 71.1 [M+H]+; Anal. Calcd. for C34H38O4Se2 (670.11): C, 61.08; H, 5.73; found: C, 60.90; H, 5.95.