CC BY 4.0 · SynOpen 2018; 02(03): 0256-0262
DOI: 10.1055/s-0037-1610366
psp
Copyright with the author

A Simple and Mild Microwave-Based Synthesis of Novel Functionalized Benzofulvenes

Adam C. Glass*
a  Department of Chemistry, Pacific Lutheran University, 1010 122st S, Tacoma, WA 98447, USA   Email: [email protected]
,
Katherine E. Caspary
b  Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
,
Cole Fisher
a  Department of Chemistry, Pacific Lutheran University, 1010 122st S, Tacoma, WA 98447, USA   Email: [email protected]
,
Connor Whyte
a  Department of Chemistry, Pacific Lutheran University, 1010 122st S, Tacoma, WA 98447, USA   Email: [email protected]
,
James Okubo
a  Department of Chemistry, Pacific Lutheran University, 1010 122st S, Tacoma, WA 98447, USA   Email: [email protected]
,
Lev N. Zakharov
c  CAMCOR, University of Oregon, 1443 E. 13th Avenue Eugene, OR 97403, USA
› Author Affiliations
We would like to thank the PLU Division of Natural Sciences for funding this work.
Further Information

Publication History

Received: 01 August 2018

Accepted after revision: 21 August 2018

Publication Date:
14 September 2018 (online)


Abstract

Benzofulvenes and their derivatives are useful molecular entities having applications as biologically active molecules, polymer precursors, and optoelectronic devices. We have developed a simple and mild synthetic method for the formulation of a variety of these interesting compounds. Using carbonyl coupling techniques combined with microwave heating, a wide variety of functionalized benzofulvenes can be accessed rapidly in good yield. Furthermore, we have obtained five crystal structures further expanding a limited number of benzofulvene structures available.

Supporting Information

 
  • References

  • 1 Preethalayam P, Krishnan KS, Thulasi S, Chand SS, Joseph J, Nair V, Jaroschik F, Radhakrishnan KV. Chem. Rev. 2017; 117: 3930
    • 2a Licciardi M, Scialabba C, Giammona G. J. Nanopart. Res. 2017; 19: 197
    • 2b Cappelli A, Paolino M, Grisci G, Razzano V, Giuliani G, Donati A, Bonechi C, Mendichi R, Battiato S, Samperi F, Scialabba C, Giammona G, Makovece F, Licciardi M. Polym. Chem. 2016; 7: 6529
    • 3a Corrente GA, Fabiano E, De Marco L, Accorsi G, Giannuzzi R, Cardone A, Gigli G, Ciccarella G, Capodilupo A.-L. J. Mater. Sci.: Mater. Electron. 2017; 28: 8694
    • 3b Tortorella S, Talamo MM, Cardone A, Pastore M, Angelis F. J. Phys.: Condens. Matter 2016; 28: 074005
    • 3c Biani FF, Reale A, Razzano V, Paolino M, Giuliani G, Donati A, Giorgi G, Mroz W, Piovanni D, Botta C, Cappelli A. RSC Adv. 2018; 8: 10836
  • 4 Donslund BS, Nielsen RP, Mønsted SM. N, Jørgensen KA. Angew. Chem. 2016; 128: 11290
    • 5a Möllerstedt H, Carmen M, Crespo R, Ottosson H. J. Am. Chem. Soc. 2004; 126: 13938
    • 5b Ayub R, El Bakouri O, Jorner K, Solà M, Ottosson H. J. Org. Chem. 2017; 82: 6327
  • 6 Bahramian B, Ma Y, Rohanizadeh R, Chrzanowski W, Dehghani F. Green Chem. 2016; 18: 3740
  • 7 Chen S, Li L, Sun S, Ding Y, Hu A. Macromolecules 2017; 50: 534
  • 8 García-García P, Sanjuán AM, Rashid MA, Martínez-Cuezva A, Fernández-Rodríguez MA, Rodríguez F, Sanz R. J. Org. Chem. 2017; 82: 1155
  • 9 Shin S, Son J.-U, Choi C, Kim S, Lee PH. J. Org. Chem. 2016; 81: 11706
  • 10 Böhme TM, Keim C, Dannhardt G, Mutschler E, Lambrecht G. Bioorg. Med. Chem. Lett. 2001; 11: 1241
  • 11 Stavber G, Zupan M, Stavber S. Tetrahedron Lett. 2006; 8463
  • 12 Wang T, Hu Y, Zhang S. Org. Biomol. Chem. 2010; 8: 2312
  • 13 Aycock DF. Org. Process Res. Dev. 2007; 11: 156
  • 14 Kosik TM, Conrad HA, Korich AL, Lord RL. Eur. J. Org. Chem. 2015; 7460
  • 15 Marcuzzi F, Melloni G. Chim. Ind. (Rome, Italy) 1976; 58: 734s
  • 16 Glass AC, Cargill M. ChemSpider Synthetic Pages 2015; SP 778