Synlett 2018; 29(13): 1781-1785
DOI: 10.1055/s-0037-1610433
letter
© Georg Thieme Verlag Stuttgart · New York

Reevaluation of the Palladium/Carbon-Catalyzed Decarbonylation of Aliphatic Aldehydes

Vladimir Ajdačić
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia   Email: igorop@chem.bg.ac.rs
,
Andrea Nikolić
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia   Email: igorop@chem.bg.ac.rs
,
Michael Kerner
b   Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
,
Peter Wipf
b   Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
,
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia   Email: igorop@chem.bg.ac.rs
› Author Affiliations
This research was financially supported by the Ministry of Education, Science and Technological Development of Serbia (Grant No. 172008). The authors acknowledge the support of the FP7 RegPot project FCUB ERA GA No. 256716. The EC does not share responsibility for the content of the article.
Further Information

Publication History

Received: 15 May 2018

Accepted after revision: 22 May 2018

Publication Date:
28 June 2018 (online)


Abstract

An improved method for the decarbonylation of aliphatic ­aldehydes by using a commercially available Pd/C catalyst is described. The reaction conditions are suitable for linear, cyclic, or sterically demanding substrates, as they afford the corresponding alkanes in yields of up to 99%. In addition, this Pd/C-catalyzed method exhibits good functional-group tolerance. A comparison of previously reported methods with the present one showed that the reaction conditions play a crucial role in the outcome of the reaction. The method can also be ­applied in a two-step reaction sequence for the synthesis of industrially important compounds.

Supporting Information

 
  • References and Notes

  • 1 Modak A. Maiti D. Org. Biomol. Chem. 2016; 14: 21
    • 2a Huang Y.-B. Yang Z. Chen M.-Y. Dai J.-J. Guo Q.-X. Fu Y. ChemSusChem 2013; 6: 1348
    • 2b Ishida T. Kume K. Kinjo K. Honma T. Nakada K. Ohashi H. Yokoyama T. Hamasaki A. Murayama H. Izawa Y. Utsunomiya M. Tokunaga M. ChemSusChem 2016; 9: 3441
  • 4 Hattori T. Ueda S. Takakura R. Sawama Y. Monguchi Y. Sajiki H. Chem. Eur. J. 2017; 23: 8196
  • 5 Schirmer A. Rude MA. Li XZ. Popova E. del Cardayre SB. Science 2010; 329: 559
    • 6a Bernard A. Joubès J. Prog. Lipid Res. 2013; 52: 110
    • 6b Wolf FR. Appl. Biochem. Biotechnol. 1983; 8: 249
    • 7a Cheesebrough TM. Kolattukudy PE. J. Biol. Chem. 1988; 263: 2738
    • 7b Yoder JA. Denlinger DL. Dennis MW. Kolattukudy PE. Insect Biochem. Mol. Biol. 1992; 22: 237
  • 8 Kikuchi H. Ito I. Takahashi K. Ishigaki H. Iizumi K. Kubohara Y. Oshima Y. J. Nat. Prod. 2017; 80: 2716
  • 9 Khadilkar BM. Borkar SD. J. Chem. Technol. Biotechnol. 1998; 71: 209
  • 10 Wang J.-J. Chuang Y.-Y. Hsu H.-Y. Tsai T.-C. Catal. Today 2017; 298: 109
    • 11a Tsuji J. Ohno K. Tetrahedron Lett. 1965; 6: 3969
    • 11b Ohno K. Tsuji J. J. Am. Chem. Soc. 1968; 90: 99
    • 11c Walborsky HM. Allen LE. J. Am. Chem. Soc. 1971; 93: 5465
    • 11d Doughty DH. Pignolet LH. J. Am. Chem. Soc. 1978; 100: 7083
    • 11e Fristrup P. Kreis M. Palmelund A. Norrby P.-O. Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
    • 12a Hawthorne JO. Wilt MH. J. Org. Chem. 1960; 25: 2215
    • 12b Tsuji J. Ohno K. Kajimoto T. Tetrahedron Lett. 1965; 6: 4565
    • 12c Tsuji J. Ohno K. J. Am. Chem. Soc. 1968; 90: 94
    • 12d Wilt JW. Pawlikowski WW. Jr. J. Org. Chem. 1975; 40: 3641
    • 12e Matsubara S. Yokota Y. Oshima K. Org. Lett. 2004; 6: 2071
    • 12f Modak A. Deb A. Patra T. Rana S. Maity S. Maiti D. Chem. Commun. 2012; 48: 4253
    • 12g Modak A. Naveen T. Maiti D. Chem. Commun. 2013; 49: 252
    • 12h Modak A. Rana S. Phukan AK. Maiti D. Eur. J. Org. Chem. 2017; 4168
  • 13 Kundu PK. Dhiman M. Modak A. Chowdhury A. Polshettiwar V. Maiti D. ChemPlusChem 2016; 81: 1142
  • 14 Tsuji J. Ohno K. Synthesis 1969; 157
  • 15 Hattori T. Takakura R. Ichikawa T. Sawama Y. Monguchi Y. Sajiki H. J. Org. Chem. 2016; 81: 2737
  • 16 Ajdačić V. Nikolić A. Simić S. Manojlović D. Stojanović Z. Nikodinovic-Runic J. Opsenica IM. Synthesis 2018; 50: 119
  • 17 Smari I. Youssef C. Yuan K. Beladhria A. Ben Ammar H. Ben Hassine B. Doucet H. Eur. J. Org. Chem. 2014; 1778
  • 18 Taarning E. Madsen R. Chem. Eur. J. 2008; 14: 5638
  • 19 Akanksha, Maiti D. Green Chem. 2012; 14: 2314
  • 20 Martín R. Buchwald SL. Org. Lett. 2008; 10: 4561
  • 21 Martín R. Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 7236
  • 22 Pd/C-Catalyzed Decarbonylation of Aliphatic Aldehydes: Decarbonylation of 3-phenylpropanal to ethylbenzene (2a); Typical Procedure [CAS Reg. No. 100-41-4] A dry glass reaction tube, purged with argon and equipped with a magnetic stirrer bar, was charged with 3–4 Å MS (100 mg), aldehyde 1a (50 μL, 0.38 mmol), Pd/C (20 mg, 5 mol% Pd), and cyclohexane (1 mL). The tube was sealed and heated at 130 °C for 24 h. The mixture was then cooled to r.t., filtered through a pad of Celite, and washed with CH2Cl2 (15–20 mL), to give PhEt (2a) in 67% GC-MS yield (naphthalene as standard); GC-MS: m/z = 106.1 [M]+. NMR Spectroscopic Analysis: A dry glass reaction tube, purged with argon and equipped with a magnetic stirrer bar, was charged with 3–4 Å MS (100 mg), aldehyde 1a (40 μL, 0.30 mmol), Pd/C (16 mg, 5 mol% Pd), and C6D6 (1 mL). The tube was sealed and heated at 130 °C for 24 h. The mixture was then cooled to r.t. and filtered through a short pad of silica gel to remove the catalyst. The silica gel was then washed with C6D6 (2 × 0.5 mL) to give PhEt (2a) in 78% NMR yield (BzOMe as standard). 1H NMR (500 MHz, C6D6): δ = 7.10–7.00 (m, 5 H), 2.43 (q, J = 7.5 Hz, 2 H), 1.06 (t, J = 7.5 Hz, 3 H). 13C NMR (125 MHz, C6D6): δ = 144.3, 128.6, 128.1, 125.9, 29.2, 15.8.