Synlett 2018; 29(20): 2608-2622
DOI: 10.1055/s-0037-1610486
account
© Georg Thieme Verlag Stuttgart · New York

Strategic Exploitation of the Wittig Reaction: Facile Synthesis of Heteroaromatics and Multifunctional Olefins

Praneeth Karanam
Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C.   Email: wenweilin@ntnu.edu.tw
,
Ganapuram Madhusudhan Reddy
Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C.   Email: wenweilin@ntnu.edu.tw
,
Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C.   Email: wenweilin@ntnu.edu.tw
› Author Affiliations
The authors thank the Ministry of Science and Technology of the Republic of China (MOST 104-2113-M-003-002-MY3) for financial support.
Further Information

Publication History

Received: 04 June 2018

Accepted after revision: 21 June 2018

Publication Date:
02 August 2018 (online)


Abstract

In this account, our group’s efforts towards exploring new substrates as precursors for the Wittig reaction have been discussed. Several new strategies developed by our group for the generation of requisite ylides for the Wittig reaction are highlighted. The idea behind the development of some chemoselective and diversity-oriented strategies are discussed in detail in a progressive manner. These strategies encompass a wide range of substrates that are employed for the synthesis of an array of heterocycles and multifunctional olefins and present a huge scope for their application on an industrial level.

1 Introduction

2 Development of New Methods to Effect Intramolecular Wittig Reaction

3 Development of a Catalytic Wittig Reaction

4 New Synthesis of Bis-Heteroarenes

5 Direct β-Acylation of 2-Arylidene-1,3-indandiones

6 Doubly Chemoselective Protocol for the Diversity-Oriented Synthesis of Coumarin Derivatives

7 Conclusion

 
  • References

    • 2a Rocha D. H. A., Pinto D. C. G. A., Silva A. M. S. in press; doi: 10 1002/ejoc.201800523.
    • 2b Das U. Tsai Y.-L. Lin W. Org. Biomol. Chem. 2014; 12: 4044
  • 3 Kao T.-T. Syu S. Jhang Y.-W. Lin W. Org. Lett. 2010; 12: 3066
  • 4 Chen K.-W. Syu S. Jang Y.-J. Lin W. Org. Biomol. Chem. 2011; 9: 2098
  • 5 Jang Y.-J. Syu S. Chen Y.-J. Yang M.-C. Lin W. Org. Biomol. Chem. 2012; 10: 843
  • 6 Tsai Y.-L. Das U. Syu S. Lee C.-J. Lin W. Eur. J. Org. Chem. 2013; 4634
  • 7 Syu S. Lee Y.-T. Jang Y.-J. Lin W. Org. Lett. 2011; 13: 2970
  • 8 Lee C.-J. Jang Y.-J. Wu Z.-Z. Lin W. Org. Lett. 2012; 14: 1906
  • 9 Wu Z.-Z. Jang Y.-J. Lee C.-J. Lee Y.-T. Lin W. Org. Biomol. Chem. 2013; 11: 828
  • 10 Lee Y.-T. Jang Y.-J. Syu S. Chou S.-C. Lee C.-J. Lin W. Chem. Commun. 2012; 48: 8135
  • 11 Lee Y.-T. Lee Y.-T. Lee C.-J. Sheu C.-N. Lin B.-Y. Wang J.-H. Lin W. Org. Biomol. Chem. 2013; 11: 5156
  • 12 Tsai Y.-L. Fan Y.-S. Lee C.-J. Huang C.-H. Das U. Lin W. Chem. Commun. 2013; 49: 10266
  • 13 Fan Y.-S. Das U. Hsiao M.-Y. Liu M.-S. Lin W. J. Org. Chem. 2014; 79: 11567
  • 14 Tsai Y.-L. Syu S. Yang S.-M. Das U. Fan Y.-S. Lee C.-J. Lin W. Tetrahedron 2014; 70: 5038
  • 15 Lee C.-J. Tsai C.-C. Hong S.-H. Chang G.-H. Yang M.-C. Moehlmann L. Lin W. Angew. Chem. Int. Ed. 2015; 54: 8502
  • 16 O’Brien CJ. Tellez JL. Nixon ZS. Kang LJ. Carter AL. Kunkel SR. Przeworski KC. Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
  • 17 Tsai Y.-L. Lin W. Asian J. Org. Chem. 2015; 4: 1040
  • 18 Schirmer M.-L. Adomeit S. Werner T. Org. Lett. 2015; 17: 3078
  • 19 Lee C.-J. Chang T.-H. Yu J.-K. Reddy GM. Hsiao M.-Y. Lin W. Org. Lett. 2016; 18: 3758
  • 20 Chen Y.-R. Reddy GM. Hong S.-H. Wang Y.-Z. Yu J.-K. Lin W. Angew. Chem. Int. Ed. 2017; 56: 5106
  • 21 Lee C.-J. Sheu C.-N. Tsai C.-C. Wu Z.-Z. Lin W. Chem. Commun. 2014; 50: 5304
  • 22 Yang S.-M. Wang C.-Y. Lin C.-K. Karanam P. Reddy GM. Tsai Y.-L. Lin W. Angew. Chem. Int. Ed. 2018; 57: 1668