Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(02): 235-239
DOI: 10.1055/s-0037-1610677
DOI: 10.1055/s-0037-1610677
letter
Iron-Catalyzed Synthesis of (E)-β-Vinylsilanes via a Regio- and Stereoselective Hydrosilylation from Terminal Alkynes
Financial support from the National Natural Science Foundation of China (no. 21772166) and the NFFTBS (no. J1310024) is gratefully acknowledged.
Further Information
Publication History
Received: 10 October 2018
Accepted after revision: 16 November 2018
Publication Date:
17 December 2018 (online)

§ Authors contributed equally to this work.
Abstract
A concise strategy for the synthesis of vinylsilanes from an iron-catalyzed regio- and stereoselective hydrosilylation of terminal alkynes has been developed. The catalyst and reagents are commercially available and easy to handle, providing a simple and practical method for iron-catalyzed anti-Markovnikov hydrosilylation with a good functional group tolerance.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610677.
- Supporting Information
-
References and Notes
- 1 Elke L, Dieter S. Chem. Rev. 1995; 95: 1375
- 2a Remond E, Martin C, Martinez J, Cavelier F. Chem. Rev. 2016; 116: 11654
- 2b Bracegirdle S, Anderson EA. Chem. Soc. Rev. 2010; 39: 4114
- 2c Todd AB, Larry EO. Chem. Rev. 1986; 86: 857
- 3a Srinivas V, Nakajima Y, Ando W, Sato K, Shimada S. J. Organomet. Chem. 2016; 809: 57
- 3b Jun G, Zhan L. Angew. Chem. Int. Ed. 2016; 55: 10835
- 3c Tafazolian H, Yoxtheimer R, Thakuri RS, Schmidt JA. R. Dalton Trans. 2017; 5431
- 4a Cano R, Yus M, Ramón DJ. ACS Catal. 2012; 2: 1070
- 4b Kinoshita H, Uemura R, Fukuda D, Miura K. Org. Lett. 2013; 15: 5538
- 4c McLaughlin MG, Cook MJ. Chem. Commun. 2011; 11104
- 4d McAdam CA, McLaughlin MG, Johnston AJ, Chen J, Walter MW, Cook MJ. Org. Biomol. Chem. 2013; 11: 4488
- 5a Aron JH, Hollis T. Keith, Tyler OH, Henry UV, Yunshan W. Organometallics 2013; 32: 63
- 5b Morales-Cerón JP, Lara P, López-Serrano J, Santos LL, Salazar V, Álvarez E, Suárez A. Organometallics 2017; 36: 2460
- 6a Zhang J.-w, Lu G.-p, Cai C. Green Chem. 2017; 19: 2535
- 6b Hiroshi Y, Yuko U. Chem. Commun. 1999; 1763
- 7 Field LD, Ward AJ. J. Organomet. Chem. 2003; 681: 91
- 8a Gao R, Pahls DR, Cundari TR, Yi CS. Organometallics 2014; 33: 6937
- 8b Zaranek M, Marciniec B, Pawluć P. Org. Chem. Front. 2016; 3: 1337
- 9a Andrea T, Eisen MS. Chem. Soc. Rev. 2008; 37: 550
- 9b Dash AK, Gourevich I, Ji QW, Wang J, Kapon M, Eisen MS. Organometallics 2001; 20: 5084
- 10a Corma A, Gonzalez-Arellano C, Iglesias M, Sanchez F. Angew. Chem. 2007; 7820
- 10b Ishikawa Y, Yamamoto Y, Asao N. Catal. Sci. Technol. 2013; 3: 2902
- 11a Teo WJ, Wang C, Tan YW, Ge S. Angew. Chem. 2017; 4328
- 11b Greenhalgh MD, Frank DJ, Thomas SP. Adv. Synth. Catal. 2014; 356: 584
- 11c Challinor AJ, Calin M, Nichol GS, Carter NB, Thomas SP. Adv. Synth. Catal. 2016; 358: 2404
- 12a Mo Z, Xiao J, Gao Y, Deng L. J. Am. Chem. Soc. 2014; 136: 17414
- 12b Docherty JH, Peng J, Dominey AP, Thomas SP. Nat. Chem. 2017; 9: 595
- 12c Du X, Hou W, Zhang Y, Huang Z. Org. Chem. Front. 2017; 4: 1517
- 12d Wu GJ, Chakraborty U, Wangelin AJ. V. Chem. Commun. 2018; 12322
- 12e Wu C, Teo WJ, Ge S. ACS Catal. 2018; 8: 5896
- 12f Li RH, An XM, Yang Y, Li DC, Hu ZL, Zhan ZP. Org. lett. 2018; 20: 5023
- 12g Belger C, Plietker B. Chem. Commun. 2012; 5419
- 13a Wu JY, Stanzl BN, Ritter T. J. Am. Chem. Soc. 2010; 132: 13214
- 13b Peng D, Zhang Y, Du X, Zhang L, Leng X, Walter MD, Huang Z. J. Am. Chem. Soc. 2013; 135: 19154
- 13c Bart SC, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2004; 126: 13794
- 14 Synthesis of (E)-β-Vinylsilanes; General ProcedureIn a nitrogen filled Schlenk tube, FeCl2 (2 mol%), Xantphos (2 mol%), NaBHEt3 (4 mol%), and ether (2 mL) were added and the mixture was stirred at 50 °C for 10 minutes, then alkyne (1.0 mmol) and phenylsilane (1.1 mmol) were added under N2. The reaction mixture was stirred at 50 °C. Upon completion, the solvent was removed by vacuum and the crude residue was purified by silica gel column chromatography to afford the corresponding product 3(eluent: petroleum ether/EtOAc, 100:1).(E)-But-1-en-1-yl(phenyl)silane (3a)Yield: 82% (201.7 mg); colorless liquid; 1H NMR (400 MHz, CDCl3): δ = 7.66–7.68 (m, 2 H), 7.44–7.48 (m, 3 H), 6.46 (dt, J 1 = 18.5 Hz, J 2 = 6.4 Hz, 1 H), 5.79–5.85 (m, 1 H), 4.65 (d, J = 3.2 Hz, 2 H), 2.25–2.31 (m, 2 H), 1.49–1.54 (m, 2 H), 1.38–1.41 (m, 10 H), 0.99 (t, J = 6.8 Hz, 3 H); 13C NMR (125 MHz, CDCl3): δ = 154.2, 135.3, 132.4, 129.5, 128.0, 119.8, 36.9, 31.9, 29.4, 29.3, 29.2, 28.4, 22.7, 14.1; IR (film): 3065, 2131, 1615 cm–1; HRMS (ESI): m/z [M+H]+ calcd for C16H27Si+: 247.1877; found: 247.1876.(E)-6-(Phenylsilyl)hex-5-enenitrile (3j)Yield: 44% (88.4 mg); colorless liquid; 1H NMR (400 MHz, CDCl3): δ = 7.56–7.58 (m, 2 H), 7.36–7.44 (m, 3 H), 6.28 (dt, J 1 = 18.5 Hz, J 2 = 6.3 Hz, 1 H), 5.81–5.88 (m, 1 H), 4.55 (d, J = 3.0 Hz, 2 H), 2.33–2.38 (m, 4 H), 1.77–1.85 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 150.3, 135.3, 131.6, 129.8, 128.1, 123.1, 119.4, 35.3, 24.1, 16.5; IR (film): 3065, 2234, 2132, 1615 cm–1; HRMS (ESI): m/z [M+H]+ calcd for C12H16NSi+: 202.1047; found: 202.1045.(E)-tert-Butyldimethyl((6-(phenylsilyl)hex-5-en-1-yl)oxy)silane (3l)Yield: 70% (224 mg); colorless liquid; 1H NMR (400 MHz, CDCl3): δ = 7.58–7.61 (m, 2 H), 7.37–7.42 (m, 3 H), 6.38 (dt, J1 = 18.4 Hz, J2 =6.3 Hz, 1 H), 5.73–5.79 (m, 1 H), 4.55 (d, J = 3.2 Hz, 2 H), 3.64 (t, J = 6.3 Hz, 2 H), 2.22–2.27 (m, 2 H), 1.50–1.57 (m, 4 H), 0.92 (s, 9 H), 0.07 (s, 6 H). 13C NMR (125 MHz, CDCl3): δ = 153.8, 135.3, 132.3, 129.6, 128.0, 120.1, 63.0, 36.6, 32.3, 26.0, 24.7, 18.4, –5.3; IR (film): 3062, 2132, 1615 cm–1; HRMS (ESI): m/z [M+H]+ calcd for C18H33OSi2 +: 321.2065; found: 321.2067.(E)-(4-Ethylstyryl)(phenyl)silane (3o)Yield: 64% (152.3 mg); colorless liquid; 1H NMR (500 MHz, CDCl3): δ = 7.62–7.64 (m, 2 H), 7.37–7.42 (m, 5 H), 7.13–7.19 (m, 3 H), 6.45 (d, J = 19.0 Hz, 1 H), 4.69 (s, 2 H), 2.65 (q, J = 7.5 Hz, 2 H), 1.24 (t, J = 7.6 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 149.3, 145.1, 135.5, 135.4, 131.9, 129.8, 128.1, 128.1, 126.7, 118.0, 28.7, 15.5; IR (film): 3065, 2132, 1599 cm–1; HRMS (ESI): m/z [M+H]+ calculated for C16H19Si+: 239.1251; found: 239.1252.(E)-(4-Methoxystyryl)(phenyl)silane (3p)Yield: 60% (144 mg); colorless liquid; 1H NMR (400 MHz, CDCl3): δ = 7.65–7.70 (m, 2 H), 7.39–7.49 (m, 5 H), 7.18 (d, J = 18.9 Hz, 1 H), 6.89–6.94 (m, 2 H), 6.40 (dt, J 1 = 19.0 Hz, J 2 = 3.3 Hz, 1 H), 4.77 (d, J = 3.2 Hz, 2 H), 3.85 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.1, 148.8, 135.5, 132.0, 130.8, 129.7, 128.1, 128.0, 116.4, 114.0, 55.3; IR (film): 3068, 2135, 1601 cm–1; HRMS (ESI): m/z [M+H]+ calcd for C15H17OSi+: 241.1044; found: 241.1045.(E)-(4-Fluorostyryl)(phenyl)silane (3q)Yield: 45% (102.6 mg); colorless liquid; 1H NMR (400 MHz, CDCl3): δ = 7.63–7.65 (m, 2 H), 7.39–7.45 (m, 5 H), 7.10 (d,J=18.9 Hz, 1 H), 7.02–7.06 (m, 2 H), 6.43 (dt, J 1 =18.9 Hz, J 2 = 3.2 Hz, 1 H), 4.70 (d, J = 3.1 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 163.0 (d, J = 248.8 Hz), 148.0, 135.5, 134.1, 131.5, 129.9, 128.3 (d, J = 8.2 Hz), 128.2, 119.2 (d, J = 2.0 Hz), 115.5 (d, J = 22.1 Hz); IR (film): 3068, 2137, 1601 cm–1; HRMS (ESI): m/z [M+H]+ calcd for C14H14FSi+: 229.0844; found: 229.0843