Synlett 2019; 30(14): 1719-1724
DOI: 10.1055/s-0037-1610723
letter
© Georg Thieme Verlag Stuttgart · New York

NHC-Catalyzed Synthesis of Benzazole-Phosphine Ligands under an Air Atmosphere

Wei Ren
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
,
Qian-Ming Zuo
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
,
Shang-Dong Yang
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
b   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. of China   Email: yangshd@lzu.edu.cn
› Author Affiliations
Funding was provided by the National Natural Science Foundation of China (NSFC; No. 21532001) and by the Open Fund of the Key Laboratory of Functional Molecular Engineering of Guangdong Province (2016kf04).
Further Information

Publication History

Received: 11 June 2019

Accepted after revision: 04 July 2019

Publication Date:
24 July 2019 (online)


Abstract

An efficient strategy for the synthesis of benzazole-phosphine ligand precursors via N-heterocyclic carbene catalyzed aerobic oxidative cyclization reaction has been performed. The reaction displays broad functional group tolerance and high atom economy, and the transformation has been further applied to benzazole-phosphine ligand synthesis.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Tolman CA. Chem. Rev. 1977; 77: 313
    • 1b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 1c Corbet JP, Mignani G. Chem. Rev. 2006; 106: 2651
    • 1d Devendar P, Qu R.-Y, Kang W.-M, He B, Yang G.-F. J. Agric. Food Chem. 2018; 66: 8914

      For selected examples, see:
    • 2a Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 2b Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 2c Shaikh TM, Weng CM, Hong FE. Coord. Chem. Rev. 2012; 256: 771
    • 2d Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
    • 2e Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
    • 2f Navarro O, Kelly RA, Nolan SP. J. Am. Chem. Soc. 2003; 125: 16194

      For selected examples, see:
    • 3a Braunstein P, Naud F. Angew. Chem. Int. Ed. 2001; 40: 680
    • 3b Kwong FY, Chan AS. C. Synlett 2008; 1440
    • 3c Weng Z, Teo S, Hor TS. A. Acc. Chem. Res. 2007; 40: 676
    • 3d Weng ZQ, Teo SH, Koh LL, Hor TS. A. Organometallics 2004; 23: 4342
    • 3e Liang LC, Chien PS, Huang MH. Organometallics 2005; 24: 353
    • 3f Hu XP, Dai HC, Bai CM, Chen HL, Zheng Z. Tetrahedron: Asymmetry 2004; 15: 1065
    • 3g Lam FL, Kwong FY, Chan AS. C. Chem. Commun. 2010; 46: 4649
    • 3h Yu SB, Hu XP, Deng J, Huang JD, Wang DY, Duan ZC, Zheng Z. Tetrahedron Lett. 2008; 49: 1253
    • 4a Chung KH, So CM, Wong SM, Luk CH, Zhou Z, Lau CP, Kwong FY. Chem. Commun. 2012; 48: 1967
    • 4b Wong SM, So CM, Chung KH, Lau CP, Kwong FY. Eur. J. Org. Chem. 2012; 4172
    • 4c Wong SM, So CM, Chung KH, Luk CH, Lau CP, Kwong FY. Tetrahedron Lett. 2012; 53: 3754
    • 4d Chung KH, So CM, Wong SM, Luk CH, Zhou Z, Lau CP, Kwong FY. Synlett 2012; 23: 1181
    • 4e Song BR, Knauber T, Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 2954
    • 4f Hackenberger D, Song B, Grünberg MF, Farsadpour S, Menges F, Kelm H, Groß C, Wolff T, Niedner-Schatteburg G, Thiel WR, Gooßen LJ. ChemCatChem 2015; 7: 3579
    • 4g Fu WC, Wu Y, So CM, Wong SM, Lei AW, Kwong FY. Org. Lett. 2016; 18: 5300
    • 4h Huang S, Wu SP, Zhou Q, Cui HZ, Hong X, Lin YJ, Hou XF. J. Organomet. Chem. 2018; 868: 14
    • 5a Zhang S.-G, Xie Z.-B, Liu L.-S, Liang M, Le Z.-G. Chin. Chem. Lett. 2017; 101
    • 5b Figge A, Altenbach HJ, Brauer DJ, Tielmann P. Tetrahedron: Asymmetry 2002; 13: 137

      For selected examples, see:
    • 6a Murauski KJ. R, Jaworski AA, Scheidt KA. Chem. Soc. Rev. 2018; 47: 1773
    • 6b Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 6c Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 6d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 6e Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
    • 6f Vair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
    • 6g Marion N, Díez-González S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988

      For selected examples, see:
    • 7a Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 7b Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 7c Tang W, Du D. Chem. Rec. 2016; 16: 1489
    • 7d Zhong R, Lindhorst AC, Groche FJ, Kühn FE. Chem. Rev. 2017; 117: 1970

      For selected examples of benzoin reactions, see:
    • 8a Enders D, Kallfass U. Angew. Chem. Int. Ed. 2002; 41: 1743
    • 8b Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 8c Goodman CG, Johnson JS. J. Am. Chem. Soc. 2014; 136: 14698
    • 8d Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
    • 8e Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534

      For selected examples, see:
    • 10a Simonovic S, Frison JC, Koyuncu H, Whitwood AC, Douthwaite RE. Org. Lett. 2009; 11: 245
    • 10b DiRocco DA, Oberg KM, Rovis T. J. Am. Chem. Soc. 2012; 134: 6143
    • 10c Wang GJ, Fu ZQ, Huang W. Org. Lett. 2017; 19: 3362
    • 10d Patra A, Mukherjee S, Das TK, Jain S, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2017; 56: 2730
    • 10e Harish B, Subbireddy M, Suresh S. Chem. Commun. 2017; 53: 3338
    • 10f Patra A, Gelat F, Pannecoucke X, Poisson T, Besset T, Biju AT. Org. Lett. 2018; 20: 1086
    • 10g Das TK, Ghosh A, Balanna K, Behera P, Gonnade RG, Marelli UK, Das AK, Biju AT. ACS Catal. 2019; 9: 4065
    • 10h Fernando JE. M, Nakano YJ, Zhang CH, Lupton DW. Angew. Chem. Int. Ed. 2019; 58: 4007

      For selected examples, see:
    • 11a Knappke CE. I, Imami A, Jacobi von Wangelin A. ChemCatChem 2012; 4: 937
    • 11b Möhlmann L, Ludwig S, Blechert S. Beilstein J. Org. Chem. 2013; 9: 602
    • 11c Yang W, Gou GZ, Wang Y, Fu WF. RSC Adv. 2013; 3: 6334
    • 11d Delany EG, Fagan CL, Gundala S, Mari A, Broja T, Zeitler K, Connon SJ. Chem. Commun. 2013; 49: 6510
    • 11e Xie DB, Shen D, Chen QL, Zhou JQ, Zeng XF, Zhong GF. J. Org. Chem. 2016; 81: 6136
    • 11f Ema T, Nanjo Y, Shiratori S, Terao Y, Kimura R. Org. Lett. 2016; 18: 5764
    • 11g Ta L, Axelsson A, Sunden H. Green Chem. 2016; 18: 686
    • 11h Ta L, Axelsson A, Sundén H. J. Org. Chem. 2018; 83: 12261

      For selected examples, see:
    • 12a Liu Z, Wu JQ, Yang SD. Org. Lett. 2017; 19: 5434
    • 12b Ma YN, Zhang HY, Yang SD. Org. Lett. 2015; 17: 2034
    • 12c Ma YN, Cheng MX, Yang SD. Org. Lett. 2017; 19: 600
    • 12d Ma YN, Li SX, Yang SD. Acc. Chem. Res. 2017; 50: 1480

      For selected examples, see:
    • 13a Zhou Q, Liu S, Ma M, Cui H.-Z, Hong X, Huang S, Zhang J.-F, Hou X.-F. Synthesis 2018; 50: 1315
    • 13b Patra A, James A, Das TK, Biju AT. J. Org. Chem. 2018; 83: 14820
    • 14a Brandolese A, Ragno D, Di Carmine G, Bernardi T, Bortolini O, Giovannini PP, Pandoli OG, Altomare A, Massi A. Org. Biomol. Chem. 2018; 16: 8955