Synlett 2021; 32(13): 1354-1364
DOI: 10.1055/s-0037-1610772
cluster
Perspectives on Heteroatom and Organometallic Chemistry

Recent Advances in C–Br Bond Formation

Jonathan Wong
,
We thank the financial support from the Research Grant Council of the Hong Kong Special Administration Region (RGC, CUHK14304918), the Chinese University of Hong Kong Direct Grant (4053450), Hong Kong PhD Fellowship (for J. Wong), and Innovation and Technology Commission to the State Key Laboratory of Synthetic Chemistry (GHP/004/16GD).


Abstract

Organobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.

1 Introduction

2 Selected Recent Advances

2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates

2.2 Catalytic Asymmetric Intermolecular Bromination

2.3 Some New Catalysts and Reagents for Bromination

2.4 Catalytic Site-Selective Bromination of Aromatic Compounds

2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling

3 Outlook



Publication History

Received: 26 February 2021

Accepted after revision: 16 April 2021

Article published online:
16 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
    • 2a Gelmont M, Yuzefovitch M, Yoffe D, Eden E, Levchik S. Polymers 2020; 12: 352
    • 2b Kaspersma J, Doumen C, Munro S, Prins A.-M. Polym. Degrad. Stab. 2002; 77: 325
    • 2c Covaci A, Harrad S, Abdallah MA.-E, Ali N, Law RJ, Herzke D, de Wit CA. Environ. Int. 2011; 37: 532
    • 2d Zuiderveen EA. R, Slootweg JC, de Boer J. Chemosphere 2020; 255: 126816
    • 3a Vollmer MK, Mühle J, Trudinger CM, Rigby M, Montzka SA, Harth CM, Miller BR, Henne S, Krummel PB, Hall BD, Young D, Kim J, Arduini J, Wenger A, Yao B, Reimann S, O’Doherty S, Maione M, Etheridge DM, Li S, Verdonik DP, Park S, Dutton G, Steele LP, Lunder CR, Rhee TS, Hermansen O, Schmidbauer N, Wang RH. J, Hill M, Salameh PK, Langenfelds RL, Zhou L, Blunier T, Schwander J, Elkins JW, Butler JH, Simmonds PG, Weiss RF, Prinn RG, Fraser PJ. J. Geophys. Res.: Atmos. 2016; 121: 3663
    • 3b Schauffler SM, Atlas EL, Flocke F, Lueb RA, Stroud V, Travnicek W. Geophys. Res. Lett. 1998; 25: 317
    • 4a Kurtz JB, Davis V. Lancet 1988; 331: 304
    • 4b Carpenter JF, Nalepa CJ. In SPE International Symposium on Oilfield Chemistry . Society of Petroleum Engineers; Richardson (TX, USA): 2005
    • 4c Tachikawa M, Tezuka M, Morita M, Isogai K, Okada S. Water Res. 2005; 39: 4126
    • 5a Fromm GH, Terrence CF, Chattha AS. Epilepsia 1983; 24: 394
    • 5b Wheatley AM, Kaduk JA, Gindhart AM, Blanton TN. Powder Diffr. 2018; 33: 298
  • 6 Jeschke P. Pest Manage. Sci. 2010; 66: 10
    • 7a Benkhaya S, M’rabet S, El Harfi A. Inorg. Chem. Commun. 2020; 115: 107891
    • 7b Peng H, Saunders DM. V, Sun J, Jones PD, Wong CK. C, Liu H, Giesy JP. Environ. Sci. Technol. 2016; 50: 12669
    • 8a Gribble GW. J. Chem. Educ. 2004; 81: 1441
    • 8b Gribble GW. Environ. Sci. Pollut. Res. 2000; 7: 37
    • 8c Bidleman TF, Andersson A, Jantunen LM, Kucklick JR, Kylin H, Letcher RJ, Tysklind M, Wong F. Emerging Contaminants 2019; 5: 89
    • 8d Peng H, Chen C, Saunders DM. V, Sun J, Tang S, Codling G, Hecker M, Wiseman S, Jones PD, Li A, Rockne KJ, Giesy JP. Anal. Chem. 2015; 87: 10237
    • 8e Peng H, Chen C, Cantin J, Saunders DM. V, Sun J, Tang S, Codling G, Hecker M, Wiseman S, Jones PD, Li A, Rockne KJ, Sturchio NC, Giesy JP. Environ. Sci. Technol. 2016; 50: 321
    • 8f Peng H, Chen C, Cantin J, Saunders DM. V, Sun J, Tang S, Codling G, Hecker M, Wiseman S, Jones PD, Li A, Rockne KJ, Sturchio NC, Cai M, Giesy JP. Environ. Sci. Technol. 2016; 50: 10097
    • 8g Ueno D, Darling C, Alaee M, Pacepavicius G, Teixeira C, Campbell L, Letcher RJ, Bergman Å, Marsh G, Muir D. Environ. Sci. Technol. 2008; 42: 1657
  • 9 Zhang X, Tan C.-H. Chem 2021; 7: 1
  • 10 In Organic Chemistry, 2nd ed. . Clayden J, Greeves N, Warren S. Oxford University Press; Oxford: 2012: 348
  • 11 Ioffe D, Frim R. In Kirk-Othmer Encyclopedia of Chemical Technology . John Wiley & Sons; Hoboken: 2011
  • 12 Lin R, Amrute AP, Pérez-Ramírez J. Chem. Rev. 2017; 117: 4182
    • 13a Choudhury LH, Parvin T, Khan AT. Tetrahedron 2009; 65: 9513
    • 13b Vekariya RH, Patel HD. Tetrahedron 2014; 70: 3949
    • 13c Cresswell AJ, Eey ST. C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
    • 13d Ueda M, Kano T, Maruoka K. Org. Biomol. Chem. 2009; 7: 2005
    • 13e Mustafayeva FA, Kakhramanov NT. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 2019; 62: 47
    • 13f Cantillo D, Kappe CO. React. Chem. Eng. 2017; 2: 7
    • 13g Voskressensky L, Golantsov N, Maharramov A. Synthesis 2016; 48: 615
    • 13h Rajbongshi KK, Borah AJ, Phukan P. Synlett 2016; 27: 1618
    • 14a Sanford MS, Cook A. Science of Synthesis: Catalytic Transformations via C–H Activation 2. Yu J.-Q. Thieme; Stuttgart: 2019
    • 14b Van Pée KH. Methods Enzymol. 2012; 516: 237
    • 14c Larock RC. Comprehensive Organic Transformations . VCH Publishers; New York: 1999: 171-178
    • 15a Neverov AA, Brown RS. J. Org. Chem. 1996; 61: 962
    • 15b Denmark SE, Burk MT, Hoover AJ. J. Am. Chem. Soc. 2010; 132: 1232
  • 16 Denmark SE, Burk MT. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20655
  • 18 Chung W, Vanderwal CD. Angew. Chem. Int. Ed. 2016; 55: 4396
    • 20a Sakakura A, Ukai A, Ishihara K. Nature 2007; 445: 900
    • 20b Sawamura Y, Ogura Y, Nakatsuji H, Sakakura A, Ishihara K. Chem. Commun. 2016; 52: 6068
    • 20c Samanta RC, Yamamoto H. J. Am. Chem. Soc. 2017; 139: 1460
    • 20d Zheng T, Wang X, Ng W.-H, Tse Y.-LS, Yeung Y.-Y. Nat. Catal. 2020; 3: 993
    • 21a Ashtekar KD, Vetticatt M, Yousefi R, Jackson JE, Borhan B. J. Am. Chem. Soc. 2016; 138: 8114
    • 21b Rengevich EN, Shilov EA, Staninet VI. Dokl. Akad. Nauk SSSR 1962; 146: 111
    • 21c Staninets VI, Shilov EA. Russ. Chem. Rev. 1971; 40: 272
    • 21d Williams DL. H, Bienvenüe-Goetz E, Dubois JE. J. Chem. Soc. B 1969; 517
    • 21e Bienvenüe-Goetz E, Dubois JE, Pearson DW, Williams DL. H. J. Chem. Soc. B 1970; 1275
    • 21f Cambie RC, Hayward RC, Roberts JL, Rutledge PS. J. Chem. Soc., Perkin Trans. 1 1974; 1864
    • 21g Doi JT, Luehr GW, Delcarmen D, Lippsmeyer BC. J. Org. Chem. 1989; 54: 2764
    • 21h Snider BB, Johnston MI. Tetrahedron Lett. 1985; 26: 5497
    • 22a Hafez AM, Taggi AE, Wack H, Esterbrook J, Lectka T. Org. Lett. 2001; 3: 2049
    • 22b Bartoli G, Bosco M, Carlone A, Locatelli M, Melchiorre P, Sambri L. Angew. Chem. 2005; 117: 6375
    • 22c Jiang H, Elsner P, Jensen KL, Falcicchio A, Marcos V, Jørgensen KA. Angew. Chem. Int. Ed. 2009; 48: 6844
    • 22d Kano T, Shirozu F, Maruoka K. Chem. Commun. 2010; 46: 7590
    • 23a Chen Z.-M, Zhang Q.-W, Chen Z.-H, Li H, Tu Y.-Q, Zhang F.-M, Tian J.-M. J. Am. Chem. Soc. 2011; 133: 8818
    • 23b Li H, Zhang F.-M, Tu Y.-Q, Zhang Q.-W, Chen Z.-M, Chen Z.-H, Li J. Chem. Sci. 2011; 2: 1839
    • 23c Wang S.-H, Li B.-S, Tu Y.-Q. Chem. Commun. 2014; 50: 2393
    • 23d Song Z.-L, Fan C.-A, Tu Y.-Q. Chem. Rev. 2011; 111: 7523
    • 23e Wang B, Tu YQ. Acc. Chem. Res. 2011; 44: 1207
    • 23f Müller CH, Wilking M, Rühlmann A, Wibbeling B, Hennecke U. Synlett 2011; 2043
  • 25 Tang LiG, Fu Q, Zhang X, Jiang J, Tang Z. Tetrahedron: Asymmetry 2012; 23: 245
    • 26a Zhang X, Li J, Tian H, Shi Y. Chem. Eur. J. 2015; 21: 11658
    • 26b Li L, Su C, Liu X, Tian H, Shi Y. Org. Lett. 2014; 16: 3728
    • 26c Li J, Li Z, Zhang X, Xu B, Shi Y. Org. Chem. Front. 2017; 4: 1084
    • 26d Alix A, Lalli C, Retailleau P, Masson G. J. Am. Chem. Soc. 2012; 134: 10389
    • 27a Zhang W, Liu N, Schienebeck CM, Zhou X, Izhar II, Guzeiband IA, Tang W. Chem. Sci. 2013; 4: 2652
    • 27b Soltanzadeh B, Jaganathan A, Staples RJ, Borhan B. Angew. Chem. Int. Ed. 2015; 54: 9517
    • 27c Soltanzadeh B, Jaganathan A, Yi Y, Yi H, Staples RJ, Borhan B. J. Am. Chem. Soc. 2017; 139: 2132
    • 27d Qi J, Fan G.-T, Chen J, Sun M.-H, Dong Y.-T, Zhou L. Chem. Commun. 2014; 50: 13841
    • 27e Cao Y.-M, Lentz D, Christmann M. J. Am. Chem. Soc. 2018; 140: 10677
    • 28a Hu DX, Shibuya GM, Burns NZ. J. Am. Chem. Soc. 2013; 135: 12960
    • 28b Hu DX, Seidl FJ, Bucher C, Burns NZ. J. Am. Chem. Soc. 2015; 137: 3795
    • 28c Seidl FJ, Min C, Lopez JA, Burns NZ. J. Am. Chem. Soc. 2018; 140: 15646
  • 29 Landry ML, Burns NZ. Acc. Chem. Res. 2018; 51: 1260
    • 30a Li W, Zhou P, Li G, Lin L, Feng X. Adv. Synth. Catal. 2020; 362: 1982
    • 30b Zhou P, Cai Y, Zhong X, Luo W, Kang T, Li J, Liu X, Lin L, Feng X. ACS Catal. 2016; 6: 7778
    • 30c Cai Y, Liu X, Hui Y, Jiang J, Wang W, Chen W, Lin L, Feng X. Angew. Chem. Int. Ed. 2010; 49: 6160
    • 30d Cai Y, Liu X, Jiang J, Chen W, Lin L, Feng X. J. Am. Chem. Soc. 2011; 133: 5636
    • 30e Cai YF, Liu XH, Zhou PF, Kuang YL, Lin LL, Feng X. Chem. Commun. 2013; 49: 8054
    • 30f Zhou PF, Lin LL, Chen L, Zhong X, Liu XH, Feng X. J. Am. Chem. Soc. 2017; 139: 13414
    • 31a Olah GA, Bollinger JM. J. Am. Chem. Soc. 1967; 89: 4744
    • 31b Olah GA, Bollinger JM, Brinich J. J. Am. Chem. Soc. 1968; 90: 2587
    • 31c Olah GA, Schilling P, Westermann PW, Lin HC. J. Am. Chem. Soc. 1974; 96: 3581
    • 31d Strating J, Wieringa JH, Wynberg H. Chem. Commun. 1969; 907
    • 31e Slebocka-Tilk H, Ball RG, Brown RS. J. Am. Chem. Soc. 1985; 107: 4504
    • 32a Ascheberg C, Bock J, Buß F, Meck-Lichtenfeld C, Daniliuc CG, Bergander K, Dielmann F, Hennecke U. Chem. Eur. J. 2017; 23: 11578
    • 32b Bock J, Daniliuc CG, Hennecke U. Org. Lett. 2019; 21: 1704
  • 33 Einaru S, Shitamichi K, Nagano T, Matsumoto A, Asano K, Matsubara S. Angew. Chem. Int. Ed. 2018; 57: 13863
    • 34a Braddock DC, Cansell G, Hermitage SA, White AJ. P. Chem. Commun. 2006; 42: 1442
    • 34b Braddock DC, Cansell G, Hermitage SA. Chem. Commun. 2006; 42: 2483
    • 34c Stodulski M, Goetzinger A, Kohlhepp SV, Gulder T. Chem. Commun. 2014; 50: 3435
    • 34d Ulmer A, Stodulski M, Kohlhepp SV, Patzelt C, Pöthig A, Bettray W, Gulder T. Chem. Eur. J. 2015; 21: 1444
  • 35 Arnold A, Pöthig A, Drees M, Gulder T. J. Am. Chem. Soc. 2018; 140: 4344
  • 36 Moriyama K, Kuramochi M, Tsuzuki S, Fujii K, Morita T. Org. Lett. 2021; 23: 268
    • 37a Chen T, Foo TJ. Y, Yeung Y.-Y. ACS Catal. 2015; 5: 4751
    • 37b Shi Y, Ke Z, Yeung Y.-Y. Green. Chem. 2018; 20: 4448
    • 39a Wang Y.-M, Wu J, Hoong C, Rauniyar V, Toste FD. J. Am. Chem. Soc. 2012; 134: 12928
    • 39b Miller E, Kim S, Gibson K, Derrick JS, Toste FD. J. Am. Chem. Soc. 2020; 142: 8946
    • 40a Taylor CA, Snyder SA. Org. Synth. 2020; 97: 339
    • 40b Snyder SA, Treitler DS. Angew. Chem. Int. Ed. 2009; 48: 7899
    • 40c Taylor CA, Zhang Y, Snyder SA. Chem. Sci. 2020; 11: 3036
    • 40d Schevenels F, Shen M, Snyder SA. J. Am. Chem. Soc. 2017; 139: 6329
    • 41a Dubost E, Fossey C, Cailly T, Rault S, Fabis F. J. Org. Chem. 2011; 76: 6414
    • 41b Schröder N, Wencel-Delord J, Glorius F. J. Am. Chem. Soc. 2012; 134: 8298
    • 41c John A, Nicholas KM. J. Org. Chem. 2012; 77: 5600
    • 41d Bhattarai BT, Adhikari S, Kimball EA, Moore JN, Shaughnessy KH, Snowden TS, Fronczek FR, Dolliver DD. Tetrahedron Lett. 2014; 55: 4801
    • 41e Zhang P, Hong L, Li G, Wang R. Adv. Synth. Catal. 2015; 357: 345
    • 41f Cheng Y, Dong W, Parthasarathy K, Bolm C. Org. Lett. 2017; 19: 726
    • 41g Jaiswal Y, Kumar Y, Kumar A. Org. Biomol. Chem. 2019; 17: 6809
    • 41h Tanaka J, Shibata Y, Joseph A, Nogami J, Terasawa J, Yoshimura R, Tanaka K. Chem. Eur. J. 2020; 26: 5774
    • 41i Arnold PL, Sanford MS, Pearson SM. J. Am. Chem. Soc. 2009; 131: 13912

    • CH activation ortho bromination:
    • 41j Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 41k Albrecht M. Chem. Rev. 2010; 110: 576
    • 41l Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 41m Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 41n Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
  • 42 Teskey CJ, Lui AY. W, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11677
  • 43 Yu Q, Hu L, Wang Y, Zheng S, Huang J. Angew. Chem. Int. Ed. 2015; 54: 15284
  • 44 Mori K, Ichikawa Y, Kobayashi M, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 3964
    • 45a Metrano AJ, Miller SJ. Acc. Chem. Res. 2019; 52: 199
    • 45b Gustafson JL, Lim D, Miller SJ. Science 2010; 328: 1251
    • 45c Diener ME, Metrano AJ, Kusano S, Miller SJ. J. Am. Chem. Soc. 2015; 137: 12369
    • 45d Barrett KT, Metrano AJ, Rablen PR, Miller SJ. Nature 2014; 509: 71
  • 46 Miyaji R, Asano K, Matsubara S. J. Am. Chem. Soc. 2015; 137: 6766
  • 47 Vaidya SD, Toenjes ST, Yamamoto N, Maddox SM, Gustafson JL. J. Am. Chem. Soc. 2020; 142: 2198
  • 48 Xiong X, Zheng T, Wang X, Tse Y.-LS, Yeung Y.-Y. Chem 2020; 6: 919
  • 49 Tu H, Zhu S, Qing F.-L, Chu L. Tetrahedron Lett. 2018; 59: 173
  • 50 Kee CW, Chan KM, Wong MW, Tan C.-H. Asian J. Org. Chem. 2014; 3: 536
  • 51 Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
  • 52 Wang Y, Li G.-X, Yang G, He G, Chen G. Chem. Sci. 2016; 7: 2679
    • 53a Clark AJ. Eur. J. Org. Chem. 2016; 2231
    • 53b Gao Y, Zhang P, Ji Z, Tang G, Zhao Y. ACS Catal. 2017; 7: 186
    • 54a Gao Y, Zhang P, Ji Z, Tang G, Zhao Y. ACS Catal. 2017; 7: 186
    • 54b Van Hoveln RJ, Schmid SC, Tretbar M, Buttke CT, Schomaker JM. Chem. Sci. 2014; 5: 4763
  • 55 Clark AJ, Battle GM, Bridge A. Tetrahedron Lett. 2001; 42: 1999
  • 56 Sathyamoorthi S, Banerjee S, Du Bois J, Burns NZ, Zare RN. Chem. Sci. 2018; 9: 100
  • 57 Rit RK, Yadav MR, Ghosh K, Shankar M, Sahoo AK. Org. Lett. 2014; 16: 5258
  • 58 Zhu R.-Y, Saint-Denis TG, Shao Y, He J, Sieber JD, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 5724
  • 59 Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Angew. Chem. Int. Ed. 2019; 58: 9239
    • 60a Rosner C, Hennecke U. Org. Lett. 2015; 17: 3226
    • 60b Gieuw MH, Chen S, Ke Z, Houk KN, Yeung Y.-Y. Chem. Sci. 2020; 11: 9426
    • 60c Wong Y.-C, Ke Z, Yeung Y.-Y. Org. Lett. 2015; 17: 4944
    • 61a Mao H, Tang Z, Hu H, Cheng Y, Zheng W.-H, Zhu C. Chem. Commun. 2014; 50: 9773
    • 61b Ma C, Xing D, Hu W. Org. Lett. 2016; 18: 3134
    • 61c Wang X, Dong K, Yan B, Zhang C, Qiu L, Xu X. RSC Adv. 2016; 6: 70221
    • 62a Tan Z, Liu Y, Helmy R, Rivera NR, Hesk D, Tyagarajan S, Yang L, Su J. Tetrahedron Lett. 2017; 58: 3014
    • 62b Yu K, Kong X, Yang J, Li G, Xu B, Chen Q. J. Org. Chem. 2021; 86: 917
    • 62c Yang X, Yang Q.-L, Wang X.-Y, Xu H.-H, Mei T.-S, Huang Y, Fang P. J. Org. Chem. 2020; 85: 3497
    • 62d Sun X, Ma H.-X, Mei T.-S, Fang P, Hu Y. Org. Lett. 2019; 21: 3167
    • 62e Jagatheesan R, Joseph Santhana Raj K, Lawrence S, Christopher C. RSC Adv. 2016; 6: 35602
    • 62f Xu J, Tong R. Green Chem. 2017; 19: 2952
    • 62g Yuan Y, Yao A, Zheng Y, Gao M, Zhou Z, Qiao J, Hu J, Ye B, Zhao J, Wen H, Lei A. iScience 2019; 12: 293
    • 62h Xie W, Ning S, Liu N, Bai Y, Wang S, Wang S, Shi L, Che X, Xiang J. Synlett 2019; 30: 1313
    • 63a Ochiai M, Miyamoto K, Kaneaki T, Hayashi S, Nakanishi W. Science 2011; 332: 448
    • 63b Ochiai M, Nishi Y, Goto S, Shiro M, Frohn HJ. J. Am. Chem. Soc. 2003; 125: 15304
    • 63c Ochiai M, Kaneaki T, Tada N, Miyamoto K, Chuman H, Shiro M, Hayashi S, Nakanishi W. J. Am. Chem. Soc. 2007; 129: 12938
    • 63d Ochiai M, Yoshimura A, Miyamoto K, Hayashi S, Nakanishi W. J. Am. Chem. Soc. 2010; 132: 9236
    • 63e Farooq U, Ali Shah A, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 1018
    • 63f Miyamoto K. Chemistry of Hypervalent Bromine. In PATAI’S Chemistry of Functional Groups. John Wiley & Sons; Hoboken: 2018
    • 64a Xu J, Liang L, Zheng H, Chi YR, Tong R. Nat. Commun. 2019; 10: 4754
    • 64b Lu Y, Nakatsuji H, Okumura Y, Yao L, Ishihara K. J. Am. Chem. Soc. 2018; 140: 6039
    • 64c Uyanik M, Fukatsu R, Ishihara K. Chem. Asian J. 2010; 5: 456
    • 64d Wang H, Wang Z, Wang Y.-L, Zhou R.-R, Wu G.-C, Yin S.-Y, Yan X, Wang B. Org. Lett. 2017; 19: 6140
    • 64e Grabowski SJ. Chem. Phys. Lett. 2014; 605: 131
    • 64f Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478