Synlett 2021; 32(10): 1024-1028
DOI: 10.1055/s-0037-1610773
letter

Direct Synthesis of N-Protected Serine- and Threonine-Derived Weinreb Amides via Diboronic Acid Anhydride-Catalyzed Dehydrative Amidation: Application to the Concise Synthesis of ­Garner’s Aldehyde

,
Naoki Ohse
,
Naoya Takahashi
,
Sari Urata
,
Masayoshi Koshizuka
,
JSPS KAKENHI Grant Number 19K07000 to N.S. for Scientific Research (C).


Abstract

An efficient method for the direct synthesis of Weinreb amides derived from serine and threonine derivatives via diboronic acid anhydride-catalyzed hydroxy-directed amidation is described. This is the first successful example of the synthesis of serine- or threonine-derived Weinreb amides using catalytic dehydrative amidations. The methodology could be applied to the concise synthesis of Garner’s aldehyde.

Supporting Information



Publication History

Received: 22 March 2021

Accepted after revision: 10 April 2021

Article published online:
04 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
    • 2a Balasubramaniam S, Aidhen IS. Synthesis 2008; 3707
    • 2b Senatore R, Ielo L, Monticelli S, Castoldi L, Pace V. Synthesis 2019; 51: 2792
    • 3a Evans DA, Hu E, Tedrow JS. Org. Lett. 2001; 3: 3133
    • 3b So RC, Ndonye R, Izmirian DP, Richardson SK, Guerrera RL, Howell AR. J. Org. Chem. 2004; 69: 3233
    • 3c Panda G, Rao NV. Synlett 2004; 714
    • 3d Ndonye RM, Izmirian DP, Dunn MF, Yu KO. A, Porcelli SA, Khurana A, Kronenberg M, Richardson SK, Howell AR. J. Org. Chem. 2005; 70: 10260
    • 3e Yoshida A, Akaiwa M, Asakawa T, Hamashima Y, Yokoshima S, Fukuyama T, Kan T. Chem. Eur. J. 2012; 18: 11192
    • 3f Wilson ZE, Fenner S, Ley SV. Angew. Chem. Int. Ed. 2015; 54: 1284
    • 3g Ojima D, Yasui A, Tohyama K, Tokuzumi K, Torihara E, Ito K, Iwasaki A, Tomura T, Ojika M, Suenaga K. J. Org. Chem. 2016; 81: 9886
    • 3h Ohsawa K, Sugai M, Zhang L, Masuda Y, Yoshida M, Doi T. J. Org. Chem. 2019; 84: 6765
    • 4a Garner P. Tetrahedron Lett. 1984; 25: 5855
    • 4b Garner P, Ramakanth S. J. Org. Chem. 1986; 51: 2609
    • 4c Garner P, Park JM. J. Org. Chem. 1987; 52: 2361
    • 4d Garner P, Park JM. Org. Synth. 1992; 70: 18

      For reviews, see:
    • 5a Liang X, Andersch J, Bols M. J. Chem. Soc., Perkin Trans. 1 2001; 2136
    • 5b Passiniemi M, Koskinen AM. P. Beilstein J. Org. Chem. 2013; 9: 2641
    • 5c Bera S, Mondal D, Singh M, Kale RK. Tetrahedron 2013; 69: 969
  • 6 Campbell AD, Raynham TM, Taylor RJ. K. Synthesis 1998; 1701
    • 7a McKillop A, Taylor RJ. K, Watson RJ, Lewis N. Synthesis 1994; 31
    • 7b Roush WR, Hunt JA. J. Org. Chem. 1995; 60: 798
    • 7c Dondoni A, Perrone D. Synthesis 1997; 527
    • 7d Dondoni A, Perrone D. Org. Synth. 2000; 77: 64
    • 7e Trajkovic M, Ferjancic Z, Saicic RN. Tetrahedron: Asymmetry 2012; 23: 602
    • 7f Masui H, Yosugi S, Fuse S, Takahashi T. Beilstein J. Org. Chem. 2017; 13: 106
    • 8a Woo JC. S, Fenster E, Dake GR. J. Org. Chem. 2004; 69: 8984
    • 8b Hiroki K, Kobayashi H, Ohkihara R, Tani S, Kunishima M. Chem. Pharm. Bull. 2004; 52: 470
    • 8c Niu T, Zhang W, Huang D, Xu C, Wang H, Hu Y. Org. Lett. 2009; 11: 4474
    • 8d Kumar A, Akula HK, Lakshman MK. Eur. J. Org. Chem. 2010; 2709
    • 8e Tyrrell E, Brawn P, Carew M, Greenwood I. Tetrahedron Lett. 2011; 52: 369
    • 8f Niu T, Wang K.-H, Huang D, Xu C, Su Y, Hu Y, Fu Y. Synthesis 2014; 46: 320
  • 9 Wilson ZE, Fenner S, Ley SV. Angew. Chem. Int. Ed. 2015; 54: 1284
  • 10 Haridas V, Bijesh MB, Chandra A, Sharma S, Shandilya A. Chem. Commun. 2014; 50: 13797
  • 11 Ojima D, Yasui A, Tohyama K, Tokuzumi K, Torihara E, Ito K, Iwasaki A, Tomura T, Ojika M, Suenaga K. J. Org. Chem. 2016; 81: 9886
  • 12 Uma K, Lalithamba HS, Raghavendra M, Chandramohan V, Anupama C. ARKIVOC 2016; (iv): 339
  • 13 Sharnabai KM, Nagendra G, Vishwanatha TM, Sureshbabu VV. Tetrahedron Lett. 2013; 54: 478
    • 14a Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 14b Ishihara K, Ohara S, Yamamoto H. Org. Synth. 2002; 79: 176
    • 15a Arnold K, Batsanov AS, Davies B, Whiting A. Green Chem. 2008; 10: 124
    • 15b Arnold K, Davies B, Hérault D, Whiting A. Angew. Chem. Int. Ed. 2008; 47: 2673
    • 15c Liu S, Yang Y, Liu X, Ferdousi FK, Batsanov AS, Whiting A. Eur. J. Org. Chem. 2013; 5692
    • 16a Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 16b Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
    • 16c Fatemi S, Gernigon N, Hall DG. Green Chem. 2015; 17: 4016
    • 17a Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
    • 17b Lu Y, Wang K, Ishihara K. Asian J. Org. Chem. 2017; 6: 1191
    • 17c Wang K, Lu Y, Ishihara K. Chem. Commun. 2018; 54: 5410
    • 18a Tam EK. W, Rita Rita, Liu LY, Chen A. Eur. J. Org. Chem. 2015; 1100
    • 18b El Dine TM, Erb W, Berhaunt Y, Rouden J, Blanchet J. J. Org. Chem. 2015; 80: 4532
    • 18c El Dine TM, Rouden J, Blanchet J. Chem. Commun. 2015; 51: 16084
  • 19 Sawant DN, Bagal DB, Ogawa S, Selvam K, Saito S. Org. Lett. 2018; 20: 4397
    • 20a Sabatini MT, Boulton LT, Sheppard TD. Sci. Adv. 2017; 3: e1701028
    • 20b Sabatini MT, Karaluka V, Lanigan RM, Boulton LT, Badland M, Sheppard TD. Chem. Eur. J. 2018; 24: 7033
    • 20c Ghorpade SA, Sawant DN, Sekar N. Tetrahedron Lett. 2018; 74: 6954
    • 21a Noda H, Furutachi M, Asada Y, Shibasaki M, Kumgai N. Nat. Chem. 2017; 9: 571
    • 21b Liu Z, Noda H, Shibasaki M, Kumagai N. Org. Lett. 2018; 20: 612
    • 21c Noda H, Asada Y, Shibasaki M, Kumagai N. J. Am. Chem. Soc. 2019; 141: 1546
    • 21d Opie CR, Noda H, Shibasaki M, Kumagai N. Chem. Eur. J. 2019; 25: 4648
  • 22 Michigami K, Sakaguchi T, Takemoto Y. ACS Catal. 2020; 10: 683
  • 23 Arkhipenko S, Sabatini MT, Batsanov AS, Karaluka V, Sheppard TD, Rzepa HS, Whiting A. Chem. Sci. 2018; 9: 1058
    • 24a Shimada N, Hirata M, Koshizuka M, Ohse N, Kaito R, Makino K. Org. Lett. 2019; 21: 4303
    • 24b Koshizuka M, Makino K, Shimada N. Org. Lett. 2020; 22: 8658
    • 24c Shimada N, Takahashi N, Ohse N, Koshizuka M, Makino K. Chem. Commun. 2020; 56: 13145
  • 25 Procedure for the Catalytic Synthesis of Weinreb Amide 4a (Table 1, Entry 8, 1 g Scale) N,O-Dimethylhydroxylamine (3, 25.0 mL, 0.60 M in DCE, 15.0 mmol, 3.0 equiv) was added dropwise over 1 h to a suspension of diboronic acid anhydride 1 (54.0 mg, 0.100 mmol, 2.0 mol%) and Boc-Ser-OH (2a, 1.03 g, 5.00 mmol, 1.0 equiv) in DCE (8.3 mL, total 0.15 M) under reflux (bath temp, 90 °C). After stirring for 24 h under reflux, the reaction mixture was cooled to room temperature. Concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (5% MeOH in CHCl3) to give tert-butyl (S)-(3-hydroxy-1-[methoxy(methyl)amino]-1-oxopropan-2-yl)carbamate (4a, 1.02 g, 4.08 mmol, 82%). The optical purity of 4a was determined to be >99% ee by chiral HPLC analysis. Analytical Data for Compound 4a Rf = 0.35 (CHCl3/MeOH = 19:1); [α]D 25 14.2 (c 1.0, MeOH); mp 116–117 °C. 1H NMR (400 MHz, CDCl3): δ = 5.58 (br s, 1 H), 4.80 (br s, 1 H), 3.83–3.81 (m, 2 H), 3.78 (s, 3 H), 3.23 (s, 3 H), 1.45 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 171.0, 155.7, 79.8, 63.2, 61.5, 52.4, 32.0, 28.2. IR (KBr): ν = 3473, 3357, 2978, 1060, 1704, 1537, 1363, 1297, 1181, 980, cm–1. HRMS (ESI): m/z calcd for C10H20N2NaO5 [M + Na]+: 271.1270; found: 292.1266. HPLC (CHIRALPAK IC, hexane/i-PrOH = 80:20, 230 nm, flow rate 1.0 mL/min): t R = 14.4 min (minor), 26.4 min (major).
  • 26 In order to compare the catalytic efficiency with 1, we examined the reaction using several organoboron and metal catalysts. As a result, it was shown that 1 exhibits higher catalytic activity compared to previous catalysts under the same conditions. See SI-Table 1 in the Supporting Information for details.
  • 27 Procedure for the Synthesis of Garner’s Aldehyde (5, Scheme 4, 1 g Scale) N,O-Dimethylhydroxylamine (3, 25.0 mL, 0.60 M in DCE, 15.0 mmol, 3.0 equiv) was added dropwise over 1 h to a suspension of diboronic acid anhydride 1 (54.0 mg, 0.100 mmol, 2.0 mol%) and Boc-Ser-OH (2a, 1.03 g, 5.00 mmol, 1.0 equiv) in DCE (8.3 mL, total 0.15 M) under reflux (bath temp 90 °C). After stirring for 24 h under reflux (bath temp 90°C), the reaction mixture was cooled to room temperature. Concentration under reduced pressure furnished the crude product, which was subjected to the next step without further purification. BF3·OEt2 (125 μL, 1.00 mmol, 0.2 equiv) was added to a solution of the crude mixture and 2,2-dimethoxy propane (3.68 mL, 30.0 mmol 6.0 equiv) in acetone (16.6 mL, 0.3 M). After stirring for 24 h at room temperature, Et3N (1.0 mL) was added, and the solvent was removed under reduced pressure to give a brown oil, which was dissolved in EtOAc (120 mL). The resulting organic layer was washed with saturated NaHCO3 aq (30 mL), water (30 mL), and brine (30 mL) successively and dried over Na2SO4. Filtration and concentration under reduced pressure furnished the crude product, which was subjected to the next step without further purification. LiAlH4 (2.50 mL, 1.0 M in THF, 2.50 mmol, 0.50 equiv) was added dropwise to a solution of the crude mixture in THF (50 mL, 0.1 M) at 0 °C. After stirring for 1 h at 0 °C under N2 atmosphere, saturated KHSO4 aq (5 mL) was added carefully. The mixture was diluted with Et2O (120 mL) and washed by water (30 mL) and brine (30 mL) successively and dried over Na2SO4. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (20% EtOAc in n-hexane) to give ­Garner’s aldehyde (5, 860 mg, 3.74 mmol, 75% over 3 steps) as a pale yellow oil of rotamer mixture (major/minor = 59:41).28 Analytical Data for Compound 5 Pale yellow oil; Rf = 0.33 (n-hexane/EtOAc = 1:1.5); [α]D 25 –93.1 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3, rotamer*): δ = 9.61* (br, 0.41 H), 9.55 (br, 0.59 H), 4.34* (br, 0.41 H), 4.20 (br, 0.59 H), 4.12–4.07 (m, 2 H), 1.66–1.44 (m, 15 H). 13C NMR (100 MHz, CDCl3, rotamer*): δ = 199.3, 152.5*, 151.3, 95.0, 94.3*, 81.3*, 81.0, 64.6, 63.8, 63.4*, 28.2, 26.6*, 25.7, 24.6*, 23.7. IR (neat): ν = 2980, 1709, 1367, 1266, 1171, 1095, 1062, cm–1. HRMS (ESI): m/z calcd for C14H20N2NaO5 [M + Na]+: 252.1212; found: 252.1210.
  • 28 The optical purity of 5 was determined to be >99% ee by chiral HPLC analysis after conversion into the corresponding benzoate (for details see the Supporting Information).