Synlett 2018; 29(18): 2427-2431
DOI: 10.1055/s-0037-1611001
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Cross-Coupling of Arenediazonium Salts with Organoindium or Organobismuth Reagents

Nastja Riemer
a   Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany   Email: bernd.schmidt@uni-potsdam.de
b   Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
,
Christin Coswig
a   Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany   Email: bernd.schmidt@uni-potsdam.de
,
b   Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
,
a   Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany   Email: bernd.schmidt@uni-potsdam.de
› Author Affiliations
Financial support from the University of Potsdam is gratefully ­acknowledged.
Further Information

Publication History

Received: 17 August 2018

Accepted after revision: 07 September 2018

Publication Date:
11 October 2018 (online)


Abstract

Arylindium and isolated triarylbismuth compounds generated in situ react as nucleophiles with arenediazonium salts in palladium-catalyzed cross-coupling reactions to give substituted biphenyls.

Supporting Information

 
  • References and Notes

  • 1 Hussain I. Singh T. Adv. Synth. Catal. 2014; 356: 1661
  • 2 Lee N.-K. Yun SY. Mamidipalli P. Salzman RM. Lee D. Zhou T. Xia Y. J. Am. Chem. Soc. 2014; 136: 4363
  • 3 Wessig P. Müller G. Chem. Rev. 2008; 108: 2051
  • 4 Stanforth SP. Tetrahedron 1998; 54: 263
  • 5 Wallace TW. Org. Biomol. Chem. 2006; 4: 3197
  • 6 Hussain I. Capricho J. Yawer MA. Adv. Synth. Catal. 2016; 358: 3320 ; Corrigendum: Adv. Synth. Catal. 2016, 358, 3907
  • 7 Miyaura N. Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
  • 8 Guram AS. Milne JE. Tedrow JS. Walker SD. In Science of Synthesis: Cross Coupling and Heck-Type Reactions . Vol. 1, Chap. 1.1.1.1. Molander GA. Thieme; Stuttgart: 2013: 9
  • 9 Suginome M. Ohmura T. In Science of Synthesis: Cross Coupling and Heck-Type Reactions . Vol. 1, Chap. 1.1.1.2. Molander GA. Thieme; Stuttgart: 2013: 147
  • 10 Denmark SE. Chang W.-TT. In Science of Synthesis: Cross Coupling and Heck-Type Reactions . Vol. 1, Chap. 1.2.2. Molander GA. Thieme; Stuttgart: 2013: 383
  • 11 Gosmini C. Corpet M. In Science of Synthesis: Cross Coupling and Heck-Type Reactions . Vol. 1, Chap. 1.4.1. Molander GA. Thieme; Stuttgart: 2013: 623
  • 12 Pitaval A. Echavarren AM. In Science of Synthesis: Cross Coupling and Heck-Type Reactions . Vol. 1, Chap. 1.3.1. Molander GA. Thieme; Stuttgart: 2013: 527
  • 13 Wolf C. In Science of Synthesis: Cross Coupling and Heck-Type Reactions . Vol. 1, Chap. 1.5.1. Molander GA. Thieme; Stuttgart: 2013: 863
  • 14 Högermeier J. Reissig H.-U. Adv. Synth. Catal. 2009; 351: 2747
  • 15 Revathi L. Ravindar L. Leng J. Rakesh KP. Qin H.-L. Asian J. Org. Chem. 2018; 7: 662
  • 16 Roglans A. Pla-Quintana A. Moreno-Mañas M. Chem. Rev. 2006; 106: 4622
  • 17 Felpin F.-X. Nassar-Hardy L. Le Callonnec F. Fouquet E. Tetrahedron 2011; 67: 2815
  • 18 Taylor JG. Venturini Moro A. Correia CR. D. Eur. J. Org. Chem. 2011; 1403
  • 19 Bonin H. Fouquet E. Felpin F.-X. Adv. Synth. Catal. 2011; 353: 3063
  • 20 Kikukawa K. Matsuda T. Chem. Lett. 1977; 6: 159
  • 21 de Oliveira Silva J. Angnes RA. Menezes da Silva VH. Servilha BM. Adeel M. Braga AA. C. Aponick A. Correia CR. D. J. Org. Chem. 2016; 81: 2010
  • 22 Li Z. Ip FC. F. Ip NY. Tong R. Chem. Eur. J. 2015; 21: 11152
  • 23 Lucks S. Brunner H. Org. Process Res. Dev. 2017; 21: 1835
  • 24 Oger N. d’Halluin M. Le Grognec E. Felpin F.-X. Org. Process Res. Dev. 2014; 18: 1786
  • 25 Schmidt B. Wolf F. Brunner H. Eur. J. Org. Chem. 2016; 2972
  • 26 Darses S. Jeffery T. Genêt J.-P. Brayer J.-L. Demoute J.-P. Tetrahedron Lett. 1996; 37: 3857
  • 27 Sengupta S. Bhattacharyya S. J. Org. Chem. 1997; 62: 3405
  • 28 Felpin F.-X. Fouquet E. Adv. Synth. Catal. 2008; 350: 863
  • 29 Schmidt B. Hölter F. Org. Biomol. Chem. 2011; 9: 4914
  • 30 Barbero M. Dughera S. Tetrahedron 2018; 74: 5758
  • 31 Cheng K. Wang C. Ding Y. Song Q. Qi C. Zhang X.-M. J. Org. Chem. 2011; 76: 9261
  • 32 Cheng K. Zhao B. Hu S. Zhang X.-M. Qi C. Tetrahedron Lett. 2013; 54: 6211
  • 33 Barbero M. Cadamuro S. Dughera S. Tetrahedron 2014; 70: 8010
  • 34 Karbach A. Stemler T. Kopp C. Trommer WE. Synthesis 2014; 46: 3103
  • 35 Kikukawa K. Kono K. Wada F. Matsuda T. J. Org. Chem. 1983; 48: 1333
  • 36 Dughera S. Synthesis 2006; 1117
  • 37 Barbero M. Cadamuro S. Dughera S. Giaveno C. Eur. J. Org. Chem. 2006; 4884
  • 38 Schmidt B. Riemer M. Karras M. J. Org. Chem. 2013; 78: 8680-8688
  • 39 Schmidt B. Riemer M. J. Org. Chem. 2014; 79: 4104
  • 40 Chizzali C. Beerhues L. Beilstein J. Org. Chem. 2012; 8: 613
  • 41 Zhao K. Shen L. Shen Z.-L. Loh T.-P. Chem. Soc. Rev. 2017; 46: 586
  • 42 Rao ML. N. Yamazaki O. Shimada S. Tanaka T. Suzuki Y. Tanaka M. Org. Lett. 2001; 3: 4103
  • 43 Hébert M. Petiot P. Benoit E. Dansereau J. Ahmad T. Le Roch A. Ottenwaelder X. Gagnon A. J. Org. Chem. 2016; 81: 5401
  • 44 Rao ML. N. Dasgupta P. Islam SS. Org. Chem. Front. 2017; 4: 335
  • 45 Rao ML. N. Dhanorkar RJ. RSC Adv. 2014; 4: 13134
  • 46 Schmidt B. Hölter F. Berger R. Jessel S. Adv. Synth. Catal. 2010; 352: 2463
  • 47 Machado AH. L. Milagre HM. S. Eberlin LS. Sabino AA. Correia CR. D. Eberlin MN. Org. Biomol. Chem. 2013; 11: 3277
  • 48 Amatore C. Le Duc G. Jutand A. Chem. Eur. J. 2013; 19: 10082
  • 49 Luan J. Zhang L. Hu Z. Molecules 2011; 16: 4191
  • 50 Jeffery T. Tetrahedron Lett. 1991; 32: 2121
  • 51 Methyl 4-Hydroxy-3′-methoxybiphenyl-3-carboxylate (4cf); Typical Example The diazonium salt 3f (134 mg, 0.50 mmol), triarylbismuthane 7c (265 mg, 0.50 mmol, 1.0 equiv), Pd(acac)2 (15.2 mg, 0.05 mmol, 10 mol%), and NaOAc (123 mg, 1.50 mmol, 3.0 equiv) were suspended in MeCN (0.5 mL, 1.0 M), and the mixture was stirred for 16–18 h at r.t. The mixture was then diluted with EtOAc (30 mL), washed with H2O (30 mL), dried (MgSO4), and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, PE­–EtOAc) to give a colorless oil; yield: 66 mg (51%, 0.26 mmol). IR (ATR): 2999 (bw), 1738 (w), 1675 (m), 1204 (s), 1170 (m) cm–1. 1H NMR (500 MHz, CDCl3): δ = 10.78 (s, 1 H), 8.07 (d, J = 2.2 Hz, 1 H), 7.70 (dd, J = 8.6, 2.2 Hz, 1 H), 7.35 (t, J = 7.9 Hz, 1 H), 7.13 (d, J = 7.7 Hz, 1 H), 7.09–7.03 (m, 2 H), 6.88 (dd, J = 8.2, 2.2 Hz, 1 H), 3.98 (s, 3 H), 3.87 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 170.7, 161.2, 160.2, 141.6, 134.6, 132.4, 130.0, 128.4, 119.3, 118.2, 112.7, 112.6, 112.4, 55.5, 52.5. HRMS (ESI): m/z [M + Na]+ calcd for C15H14NaO4: 281.0784; found: 281.0787.