Synlett 2018; 29(20): 2693-2696
DOI: 10.1055/s-0037-1611023
letter
© Georg Thieme Verlag Stuttgart · New York

Base-Promoted Three-Component One-Pot Synthesis of 3- (Thiomethyl)indoles with Paraformaldehyde under Aqueous Conditions

Fuhong Xiao*
Key Laboratory for Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. of China   Email: fhxiao@xtu.edu.cn   Email: gjdeng@xtu.edu.cn
,
Shanshan Yuan
,
Huawen Huang
,
Guo-Jun Deng*
› Author Affiliations

We gratefully acknowledge the support for this work provided by the National Natural Science Foundation of China (21572194, 21502160). The project was supported by the Scientific Research Fund of Hunan Provincial Education Department (YB2016B024), the China Post­doctoral Science Foundation Funded Project (2015M572257), and ­Hunan Provincial Natural Science Foundation of China (16JJ3112).
Further Information

Publication History

Received: 09:08:2018

Accepted after revision: 24:09:2018

Publication Date:
17 October 2018 (online)


Abstract

An ethylenediamine-promoted three-component synthesis of 3-(thiomethyl)indoles from indoles, thiophenols, and paraformaldehyde has been developed. Water is used as the green solvent in a simple and environmentally friendly procedure. Stable and low-toxicity paraformaldehyde is used as a carbon source.

Supporting Information

 
  • References and Notes


    • For selected recent examples, see:
    • 2a Mizoguchi H. Oguri H. Tsuge K. Oikawa H. Org. Lett. 2009; 11: 3016
    • 2b Ueda H. Satoh H. Matsumoto K. Sugimoto K. Fukuyama T. Tokuyama H. Angew. Chem. Int. Ed. 2009; 48: 7600
    • 2c Jiang B. Yang C.-G. Wang J. J. Org. Chem. 2001; 66: 4865
    • 2d Safe S. Papineni S. Chintharlapalli S. Cancer Lett. 2008; 269: 326
    • 2e Lee S.-O. Abdelrahim M. Yoon K. Chintharlapalli S. Papineni S. Kim K. Wang H. Safe S. Cancer Res. 2010; 70: 6824
    • 2f Queiroz MM. F. Queiroz EF. Zeraik ML. Ebrahimi SN. Marcourt L. Cuendet MI. Castro-Gamboa I. Hamburger M. da Silva Bolzani V. Wolfender J.-L. J. Nat. Prod. 2014; 77: 650

      For selected recent examples, see:
    • 3a Kagawa N. Malerich JP. Rawai VH. Org. Lett. 2008; 10: 2381
    • 3b Shaikh RR. Mazzanti A. Petrini M. Bartoli G. Melchiorre P. Angew. Chem. Int. Ed. 2008; 47: 8707
    • 4a Khorshidi A. Shariati S. RSC Adv. 2014; 4: 41469
    • 4b Dar AA. Ali S. Khan AT. Tetrahedron Lett. 2014; 55: 486
    • 4c Parnes R. Pappo D. Org. Lett. 2015; 17: 2924
    • 4d Coker JN. J. Org. Chem. 1962; 27: 1881
    • 5a Han X. Wu J. Org. Lett. 2010; 12: 5780
    • 5b Suárez A. Martínez F. Sanz R. Org. Biomol. Chem. 2016; 14: 11212
    • 5c Wen H. Wang L. Xu L. Hao Z. Shao C.-L. Wang C.-Y. Xiao J. Adv. Synth. Catal. 2015; 357: 4023
    • 5d Xiao J. Wen H. Wang L. Xu L. Hao Z. Shao C.-L. Wang C.-Y. Green Chem. 2016; 18: 1032
  • 6 For a review, see: Li W. Wu X.-F. Adv. Synth. Catal. 2015; 357: 3393
  • 7 Taylor RT. O’Sullivan TJ. In e-EROS: Encyclopedia of Reagents for Organic Synthesis . Wiley-Interscience; Chichester: 2008. ; DOI: 10.1002/047084289X.rp018.pub2
    • 8a Li M. He C. Chen F. Gu Y. Adv. Synth. Catal. 2010; 352: 519
    • 8b Park K. Heo Y. Lee S. Org. Lett. 2013; 15: 3322
    • 8c Ohta Y. Kubota Y. Watabe T. Chiba H. Oishi S. Fujii N. Ohno H. J. Org. Chem. 2009; 74: 6299
    • 8d Ohta Y. Chiba H. Oishi S. Fujii N. Ohno H. J. Org. Chem. 2009; 74: 7052
    • 8e Natte K. Li W. Zhou S. Neumann H. Wu X.-F. Tetrahedron Lett. 2015; 56: 1118
    • 8f Man NY. T. Li W. Stewart SG. Wu X.-F. Chimia 2015; 69: 345
    • 9a Garcia JM. Jones GO. Virwani K. Science 2014; 344: 732
    • 9b Natte K. Dumrath A. Neumann H. Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
    • 9c Li W. Wu X.-F. J. Org. Chem. 2014; 79: 10410
    • 10a Ngai M.-Y. Skucas E. Krische MJ. Org. Lett. 2008; 10: 2705
    • 10b Okachi T. Fujimoto K. Onaka M. Org. Lett. 2002; 4: 1667
    • 10c Köpfer K. Sam B. Breit B. Krische MJ. Chem. Sci. 2013; 4: 1876
    • 10d Li W. Wu X.-F. Eur. J. Org. Chem. 2015; 331
  • 11 Wang H. Cai J. Huang H. Deng G.-J. Org. Lett. 2014; 16: 5324
  • 12 Cheng XF. Peng Y. Wu J. Deng G.-J. Org. Biomol. Chem. 2016; 14: 2819
  • 13 Cheng X. Wang H. Xiao F. Deng G.-J. Green Chem. 2016; 18: 5773
    • 14a Xiao F. Chen S. Tian J. Huang H. Liu Y. Deng G.-J. Green Chem. 2016; 18: 1538
    • 14b Xiao F. Chen S. Li C. Huang H. Deng G.-J. Adv. Synth. Catal. 2016; 358: 3881
    • 14c Xiao F. Tian J. Xing Q. Huang H. Deng G.-J. Liu Y. ChemistrySelect 2017; 2: 428
    • 15a Zhang X. Li X. Allan GF. Musto A. Lundeen SG. Sui Z. Bioorg. Med. Chem. Lett. 2006; 16: 3233
    • 15b Kang N. Lee J.-M. Jeon A. Oh HB. Moon B. Tetrahedron 2016; 72: 5612
  • 16 1-Methyl-3-{[(4-tolyl)thio]methyl}-1H-indole (3aa); Typical Procedure A 10 mL oven-dried reaction vessel was charged with 1-methyl-1H-indole (1a, 50 μL, 0.4 mmol), paraformaldehyde (24 mg, 0.8 mmol), 4-methylbenzenethiol (2a, 24.8 mg, 0.2 mmol). The vessel was sealed, and ethane-1,2-diamine (6.5 μL, 0.1 mmol) and H2O (0.5 mL) were added from a syringe. The resulting solution was stirred at 130 °C for 4 h. The volatiles were removed under vacuum, and the residue was purified by column chromatography [silica gel, PE–EtOAc ( 100:1)] to give a brown liquid; yield: 41.7 mg (78%). 1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 7.9 Hz, 1 H), 7.28–7.20 (m, 4 H), 7.14–7.10 (m, 1 H), 7.08–7.06 (m, 2 H), 6.91 (s, 1 H), 4.30 (s, 2 H), 3.69 (s, 3 H), 2.30 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 137.0, 136.0, 133.6, 130.0, 129.5, 127.7, 127.2, 121.8, 119.2, 119.1, 110.2, 109.3, 32.66, 30.34, 21.00. HRMS (ESI): m/z [M + H]+ calcd for C17H18NS: 268.11545; found: 268.11554.