Synlett 2018; 29(20): 2633-2637
DOI: 10.1055/s-0037-1611082
letter
© Georg Thieme Verlag Stuttgart · New York

Regioselective and Catalyst-Free Epoxidation of (E)-3-[3-(2-Hydroxyaryl)-3-oxoprop-1-en-1-yl]chromones

Rachid Ameraoui
a  Laboratoire de Synthèse Pétrochimique, Université M’Hamed Bougara, Boumerdès, Algeria   Email: mohamedhammadi35@yahoo.fr
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384, Bou-Ismail, 42004 Tipaza, Algeria
,
Mohamed Hammadi*
a  Laboratoire de Synthèse Pétrochimique, Université M’Hamed Bougara, Boumerdès, Algeria   Email: mohamedhammadi35@yahoo.fr
,
Oualid Talhi*
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384, Bou-Ismail, 42004 Tipaza, Algeria
c  QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal   Email: oualid.talhi@ua.pt   Email: artur.silva@ua.pt
,
Ridha Hassaine
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384, Bou-Ismail, 42004 Tipaza, Algeria
d  Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Algeria
,
Abdelghani Bouchama
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384, Bou-Ismail, 42004 Tipaza, Algeria
e  Laboratoire de Structure, Elaboration et Application des Matériaux Moléculaires (SEA2M), Faculté des Sciences et de la Technologie (FST), BP 188, Université Abdelhamid Benbadis, Mostaganem, Algeria
,
Hasnia Abdeldjebar
f  Laboratoire de Physico-Chimie Théorique et de Chimie Informatique, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, 16000 Alger, Algeria
,
Yamina Belmiloud
f  Laboratoire de Physico-Chimie Théorique et de Chimie Informatique, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, 16000 Alger, Algeria
,
Meziane Brahimi
f  Laboratoire de Physico-Chimie Théorique et de Chimie Informatique, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, 16000 Alger, Algeria
,
Filipe A. Almeida Paz
g  CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
,
Khaldoun Bachari
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384, Bou-Ismail, 42004 Tipaza, Algeria
,
c  QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal   Email: oualid.talhi@ua.pt   Email: artur.silva@ua.pt
› Author Affiliations
Thanks are due to University of Aveiro and FCT/MEC for financial support of the QOPNA research project (FCT UID/QUI/00062/2013) and the CICECO-Aveiro Institute of Materials (POCI-01-0145-FEDER-007679; FCT UID/CTM/50011/2013); these are financed by national funds and, when appropriate, co-financed by FEDER under the PT2020 Partnership Agreement, and to the Portuguese NMR Network. We would like also to thank FCT/MEC and the General Directorate for Scientific Research and Technological Development – DGRSDT of Algeria and Agence Thématique de Recherche en Sciences et Technologie ATRST for approving the co-financed bilateral project PT-DZ/0005. We further wish to thank CICECO for funding the purchase of the single-crystal X-ray diffractometer.
Further Information

Publication History

Received: 08 September 2018

Accepted after revision: 30 September 2018

Publication Date:
31 October 2018 (online)


Abstract

The uncatalyzed reaction of hydrogen peroxide with (E)-3-[3-(2-hydroxyaryl)-3-oxoprop-1-en-1-yl]chromones resulted in a regio­selective epoxidation of the chromone intracyclic C(2)=C(3) double bond to afford unique isomeric (E)-7a-[3-(2-hydroxyphenyl)-3-oxoprop-1-en-1-yl]-1aH-oxireno[2,3-b]chromen-7(7aH)-ones in high yields. 2D NMR and single-crystal X-ray diffraction were used to elucidate the structures of the chromanone epoxides. Density functional theoretical studies demonstrated a high electrophilicity of the starting chromones.

Supporting Information

 
  • References and Notes

    • 1a Sousa JL. C, Talhi O, Rocha DH. A, Pinto DC. G. A, Paz FA. A, Bachari K, Kirsch G, Silva AM. S. Synlett 2015; 26: 2724
    • 1b Talhi O, Brodziak-Jaroz L, Panning J, Orlikova B, Zwergel C, Tzanova T, Philippot S, Pinto DC. G. A, Paz FA. A, Gerhäuser C, Dick TP, Jacob C, Diederich M, Bagrel D, Kirsch G, Silva AM. S. Eur. J. Org. Chem. 2016; 965
    • 1c Sousa JL. C, Talhi O, Mendes RF, Paz FA. A, Bachari K, Silva AM. S. Eur. J. Org. Chem. 2016; 3949
    • 2a Huang W, Liu M.-Z, Li Y, Tan Y, Yang G.-F. Bioorg. Med. Chem. 2007; 15: 5191
    • 2b Wu C, Liu Y, Zeng H, Lui L, Wang D, Chen Y. Org. Biomol. Chem. 2011; 9: 253
    • 2c Pintiala C, Lawson AM, Comesse S, Daïch A. Tetrahedron Lett. 2013; 54: 2853
    • 3a Lévai A, Simon A, Jenei A, Kálmán G, Jekö J, Tóth G. ARKIVOK 2009; (xii): 161
    • 3b Lechani N, Hamdi M, Kheddis-Boutemeur B, Talhi O, Laichi Y, Bachari K, Silva AM. S. Synlett 2018; 29: 1502
    • 3c Lakhdari H, Talhi O, Hassaine R, Taibi N, Mendes RF, Paz FA. A, Bennamane N, Nedjar-Kolli B, Bachari K, Silva AM. S. Synlett 2018; 29: 1437
  • 4 Ibrahim MA. ARKIVOK 2008; (xvii), 192
    • 5a Abdel-Rahman AH, Hammouda MA. A, El-Desoky SI. Heteroat. Chem. 2005; 16: 20
    • 5b Sosnovskikh VY, Moshkin VS, Irgashev RA. Tetrahedron Lett. 2006; 47: 8543
    • 5c Sosnovskikh VY, Moshkin VS, Kodess MI. Tetrahedron Lett. 2008; 49: 6856
    • 5d Hassaine R, Talhi O, Taibi N, Paz FA. A, Bensaid O, Bachari K, Silva AM. S. Synlett 2016; 27: 465
    • 6a Weitz E, Scheffer A. Ber. Dtsch. Chem. Ges. 1921; 54: 2327
    • 6b Donnelly JA, Keegan JR, Quigley K. Tetrahedron 1980; 36: 1671
    • 6c Levai A, Patonay T, Székely A, Vass EB, Adam W, Jekö J. J. Heterocycl. Chem. 2000; 37: 1065
  • 7 Bernini R, Mincione E, Coratti A, Fabrizib G, Battistuzzi G. Tetrahedron 2004; 60: 967
    • 8a Santos CM. M, Silva AM. S, Cavaleiro JA. S, Patonay T, Lévai A. J. Heterocycl. Chem. 2006; 43: 1319
    • 8b Patonay T, Kiss-Szikszai A, Silva VL. M, Silva AM. S, Pinto DC. G. A, Cavaleiro JA. S, Jekö J. Eur. J. Org. Chem. 2008; 1937
    • 9a Hehre WJ, Radom L, Schleyer PV. R, Pople JA. Ab Initio Molecular Orbital Theory . Wiley-Interscience; New York: 1986
    • 9b Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
    • 9c Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 10 Frisch MJ, Trucks GW, Schlegel HB. et al. Gaussian 09 . Gaussian, Inc; Wallingford: 2016
    • 11a Parr RG, Pearson RG. J. Am. Chem. Soc. 1983; 105: 7512
    • 11b Schwenke DW, Truhlar DG. J. Chem. Phys. 1985; 82: 2418
    • 11c Wolinski K, Hilton JF, Pulay P. J. Am. Chem. Soc. 1990; 112: 8251
    • 11d Chattaraj PK, Lee H, Parr RG. J. Am. Chem. Soc. 1991; 113: 1855
    • 11e Šponer JP, Hobza P. Int. J. Quantum Chem. 1996; 57: 959
    • 11f Kohn W, Becke AD, Parr RG. J. Phys. Chem. 1996; 100: 12974
    • 11g Chocholoušová J, Špirko V, Hobza P. Phys. Chem. Chem. Phys. 2004; 6: 37
  • 12 Regioselective Epoxidation of 3-[(2-Hydroxyaryl)-3-oxoprop-1-enyl]chromones 1ab: General Procedure 30 vol% aq H2O2 (5 mL) was added to a solution of the appropriate chromenone 1ae (1 mmol) in THF (20 mL), and the mixture was stirred for 30–60 min at r.t. while the reaction was monitored by TLC. Ice (50 g) was then added to the solution, and the product that precipitated was extracted with CH2Cl2 (2 × 50 mL). The solution was concentrated to 10 mL under vacuum, and hexane (10 mL) was added to crystallize the product.
  • 13 7a-[(1E)-3-(2-Hydroxyphenyl)-3-oxoprop-1-en-1-yl]-1a,7a-dihydro-7H-oxireno[b]chromen-7-one (2a) Yellowish crystals; yield: 0.268 g (87%); mp 159–162 °C. 1H NMR (300.13 MHz, CDCl3): δ = 5.55 (s, 1 H, H-1a), 6.94 (ddd, J = 8.6, 7.5, 1.1 Hz, 1 H, H-5′′), 7.03 (dd, J = 8.5, 1.1 Hz, 1 H, H-3′′), 7.13 (dd, J = 8.4, 0.7 Hz, 1 H, H-3), 7.23 (dd, J = 8.4, 0.7 Hz, 1 H, H-5), 7.40 (d, J = 15.1 Hz, 1 H, H-2′), 7.48–7.56 (m, 1 H, H-4′′), 7.59 (d, J = 15.1 Hz, 1 H, H-1′), 7.59–7.67 (m, 1 H, H-4), 7.83 (dd, J = 8.6, 1.6 Hz, 1 H, H-6′′), 7.96–8.01 (m, 1 H, H-6), 12.82 (s, 1 H, 2′′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 33.4 (C-7a), 83.3 (C-1a), 118.0 (C-3), 118.6 (C-3′′), 119.1 (C-5′′), 119.3 (C-6a), 119.7 (C-1′′), 123.8 (C-5), 126.6 (C-2′), 127.6 (C-6), 130.1 (C-6′′), 136.37 and 136.52 (C-4 and C-1′), 137.1 (C-4′′), 154.9 (C-2a), 163.6 (C-2′′), 186.9 (C-7), 192.6 (C-3′). HRMS-ESI+: m/z [M + H]+ calcd for C18H13O5: 309.0763; found: 309.0731.
  • 14 Crystal data for compound 2a: C18H12O5, M = 308.29, triclinic, space group P-1, Z = 2, a = 6.5204(5) Å, b = 9.4221(8) Å, c = 11.5726(9) Å, α = 84.252(6)°, β = 77.071(5)°, γ = 85.659(5)°, V = 688.42(10) Å3, μ(Mo-Kα) = 0.110 mm–1, D c = 1.487 g cm–3, yellow block, crystal size 0.15 × 0.10 × 0.09 mm3. Of a total of 18928 reflections collected, 3676 were independent (R int = 0.0431). Final R1 = 0.0470 [I > 2σ(I)] and wR2 = 0.1132 (all data). Data completeness to theta = 25.24°, 99.8%. Crystal data for compound 2e: C19H14O5, M = 322.30, orthorhombic, space group P212121, Z = 4, a = 4.8336(3) Å, b = 11.1047(7) Å, c = 27.0691(16) Å, V = 1452.95(15) Å3, μ(Mo-Kα) = 0.107 mm–1, D c = 1.473 g cm–3, yellow plates, crystal size 0.13 × 0.09 × 0.04 mm3. Of a total of 32369 reflections collected, 3916 were independent (R int = 0.0491). Final R1 = 0.0384 [I > 2σ(I)] and wR2 = 0.0896 (all data). Data completeness to theta = 25.24°, 99.7%.
  • 15 CCDC 836401 and 836402 contain the supplementary crystallographic data for compounds 2a and 2e. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.