Synlett 2019; 30(11): 1313-1316
DOI: 10.1055/s-0037-1611545
letter
© Georg Thieme Verlag Stuttgart · New York

Electrochemical Regioselective Bromination of Electron-Rich Aromatic Rings Using n Bu4NBr

Wenxia Xie
,
Shulin Ning
,
Nian Liu
,
Ya Bai
,
Shutao Wang
,
Siyu Wang
,
Lingling Shi
,
Xin Che
,
Jinbao Xiang*
The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. of China   Email: jbxiang@jlu.edu.cn
› Author Affiliations
This work was supported by the Sci-Tech Development Project of Jilin Province in China (No. 20160520039JH), the Foundation of Jilin Educational Committee (No. JJKH20180244KJ), and the Norman Bethune Program of Jilin University (No. 2015330). Additional support was provided by Changchun Discovery Sciences, Ltd.
Further Information

Publication History

Received: 05 April 2019

Accepted after revision: 29 April 2019

Publication Date:
14 May 2019 (online)


Abstract

Electrochemical regioselective bromination of electron-rich aromatic rings using stoichiometric tetrabutylammonium bromide ( n Bu4NBr) has been accomplished under mild conditions. This protocol provides an environmentally friendly and simple way for the construction of C–Br bond in moderate to high yields with wide functional group tolerance.

Supporting Information

 
  • References and Notes

    • 1a Gribble GW. Chem. Soc. Rev. 1999; 28: 335
    • 1b Tang ML, Bao Z. Chem. Mater. 2011; 23: 446
    • 1c Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. J. Med. Chem. 2013; 56: 1363
    • 1d Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
  • 3 Kolvari E, Koukabi N, Khoramabadi-zad A, Shiri A, Zolfigol MA. Curr. Org. Synth. 2013; 10: 837
  • 4 Rogers DA, Brown RG, Brandeburg ZC, Ko EY, Hopkins MD, LeBlanc G, Lamar AA. ACS Omega 2018; 3: 12868
    • 5a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 5b Hou Z.-W, Mao Z.-Y, Xu H.-C. Synlett 2017; 28: 1867
    • 5c Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 5d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 5e Xie W, Liu N, Gong B, Ning S, Che X, Cui L, Xiang J. Eur. J. Org. Chem. 2019; 2498
    • 6a Fuchigami T, Inagi S. Chem. Commun. 2011; 47: 10211
    • 6b Yin B, Wang L, Inagi S, Fuchigami T. Tetrahedron 2010; 66: 6820
    • 6c Stevanović D, Damljanović I, Vukićević M, Manojlović N, Radulović NS, Vukićević RD. Helv. Chim. Acta 2011; 94: 1406
    • 6d Lyalin BV, Petrosyan VA, Ugrak BI. Russ. Chem. Bull. 2009; 58: 291
    • 6e Kulangiappar K, Karthik G, Kulandainathan MA. Synth. Commun. 2009; 39: 2304
    • 6f Raju T, Kulangiappar K, Kulandainathan MA, Uma U, Malini R, Muthukumaran A. Tetrahedron Lett. 2006; 47: 4581
    • 6g Kataoka K, Hagiwara Y, Midorikawa K, Suga S, Yoshida J.-i. Org. Process Res. Dev. 2008; 12: 1130
    • 6h Midorikawa K, Suga S, Yoshida J.-i. Chem. Commun. 2006; 0: 3794
    • 6i Sun L, Zhang X, Li Z, Ma J, Zeng Z, Jiang H. Eur. J. Org. Chem. 2018; 4949
  • 7 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 8a Fotouhi L, Nikoofar K. Tetrahedron Lett. 2013; 54: 2903
    • 8b Kokorekin VA, Sigacheva VL, Petrosyan VA. Tetrahedron Lett. 2014; 55: 4306
    • 9a Wang P, Tang S, Huang P, Lei A. Angew. Chem. Int. Ed. 2017; 56: 3009
    • 9b Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A. Chin. J. Chem. 2019; 37: 49
  • 10 Liu K, Tang S, Huang P, Lei A. Nat. Commun. 2017; 8: 775
  • 11 Lyalin BV, Petrosyan VA. Russ. J. Electrochem. 2013; 49: 497
  • 12 Thasan R, Kumarasamy K, Korean J. Chem. Eng. 2014; 31: 365
  • 13 Sawamura T, Takahashi K, Inagi S, Fuchigami T. Electrochemistry 2013; 81: 365
  • 14 Tan Z, Liu Y, Helmy R, Rivera NR, Hesk D, Tyagarajan S, Yang L, Su J. Tetrahedron Lett. 2017; 58: 3014
  • 15 Yuan Y, Yao A, Zheng Y, Gao M, Zhou Z, Qiao J, Hu J, Ye B, Zhao J, Wen H, Lei A. iScience 2019; 12: 293
  • 16 Yang Q.-L, Wang X.-Y, Wang T.-L, Yang X, Liu D, Tong X, Wu X.-Y, Mei T.-S. Org. Lett. 2019; 21: 2645
  • 17 Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
  • 18 4-Bromo-N,N-dimethylaniline (2a) – Typical Procedure A 10 mL distillation flask equipped with a magnetic stir bar was charged with N,N-dimethylaniline (1a, 0.25 mmol), CH2Cl2 (5 mL), and n Bu4NBr (0.375 mmol). The resulting suspension was stirred until complete dissolution. The flask equipped with graphite rod anode (d = 5 mm) and graphite rod cathode (d = 5 mm). The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 3.5 h. The reaction mixture was diluted with CH2Cl2 (15 mL), washed successively with water (10 mL) and brine (10 mL), dried over Na2SO4, and concentrated in vacuo. Purification by flash column chromatography (silica gel, petroleum ether–dichloromethane 3:1) afforded the desired product 2a (80% yield) as a white solid; mp 54–55 °C. 1H NMR (300 MHz, CDCl3): δ = 7.34–7.25 (m, 2 H), 6.60 (d, J = 9.0 Hz, 2 H), 2.93 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 149.5, 131.6, 114.1, 108.5, 40.5.
  • 19 Song S, Sun X, Li X, Yuan Y, Jiao N. Org. Lett. 2015; 17: 2886