CC BY ND NC 4.0 · Synlett 2019; 30(04): 442-448
DOI: 10.1055/s-0037-1611644
letter
Copyright with the author

Asymmetric Synthesis of Chiral 1,3-Dimethyl Units Through a Double Michael Reaction of Nitromethane and Crotonaldehyde Catalyzed by Diphenylprolinol Silyl Ether

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan   Email: yhayashi@m.tohoku.ac.jp
,
Shunsuke Toda
› Author Affiliations
JSPS KAKENHI grant number JP18H04641: Hybrid Catalysis for Enabling Molecular Synthesis on Demand, and The Uehara Memorial Foundation.
Further Information

Publication History

Received: 30 August 2018

Accepted after revision: 03 December 2018

Publication Date:
16 January 2019 (eFirst)

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

An efficient synthetic route to install chiral 1,3-dimethyl units through a double Michael reaction of crotonaldehyde and nitromethane catalyzed by diphenylprolinol silyl ether is developed. Either 1,3-syn- or 1,3-anti-dimethyl units are obtained selectively depending on the enantiomer of the diphenylprolinol silyl ether catalyst used. The side chain of pneumocandin B0 is synthesized enantioselectively by using the present method as a key step.

Supporting Information

 
  • References and Notes

  • 1 Norte M, Fernández JJ, Padilla A. Tetrahedron Lett. 1994; 35: 3413
  • 2 Liu C.-M, Hermann TE. J. Biol. Chem. 1978; 253: 5892
    • 3a Nara F, Tanaka M, Masuda-Inoue S, Yamasato Y, Doi-Yoshioka H, Suzuki-Konagai K, Kumakura S, Ogita T. J. Antibiot. 1999; 52: 531
    • 3b Nara F, Tanaka M, Hosoya T, Suzuki-Konagai K, Ogita T. J. Antibiot. 1999; 52: 525
    • 4a Berger J, Jampolsky LM, Goldberg MW. Arch. Biochem. 1949; 22: 476
    • 4b Trader DJ, Carlson EE. Bioorg. Med. Chem. Lett. 2015; 25: 4767
  • 5 For a review, see: Schmid F, Varo A, Laschat S. Synthesis 2017; 49: 237
    • 6a Oppolzer W, Moretti R, Bernardinelli G. Tetrahedron Lett. 1986; 27: 4713
    • 6b Hanessian S, Chahal N, Giroux S. J. Org. Chem. 2006; 71: 7403
    • 6c Madduri AV. R, Minnaard AJ. Chem. Eur. J. 2010; 116: 11726
    • 7a White JD, Johnson AT. J. Org. Chem. 1994; 59: 3347
    • 7b Vong BG, Abraham S, Xiang AX, Theodorakis EA. Org. Lett. 2003; 5: 1617
    • 7c Breit B, Herber C. Angew. Chem. Int. Ed. 2004; 43: 3790
    • 8a Negishi E, Tan Z, Liang B, Novak T. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5782
    • 8b Novak T, Tan Z, Liang B, Negishi E. J. Am. Chem. Soc. 2005; 127: 2838
    • 8c Xu S, Oda A, Bobinsk T, Li H, Matsueda Y, Negishi E. Angew. Chem. Int. Ed. 2015; 54: 9319
    • 9a Burns M, Essafi S, Bame JR, Bull SP, Webster MP, Balieu S, Dale JW, Butts CP, Harvey JN, Aggarwal VK. Nature 2014; 513: 183
    • 9b Balieu S, Hallett GE, Burns M, Bootwicha T, Studley J, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 4398
    • 10a Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 10b Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
    • 11a Gotoh H, Ishikawa H, Hayashi Y. Org. Lett. 2007; 9: 5307
    • 11b Hayashi Y, Kawamoto Y, Honda M, Okamura D, Umemiya S, Noguchi Y, Mukaiyama T, Sato I. Chem. Eur. J. 2014; 20: 12072
    • 12a Seebach D, Grosĕlj U, Badine DM, Schweizer WB, Beck AK. Helv. Chim. Acta 2008; 91: 1999
    • 12b Hayashi Y, Okamura D, Yamazaki T, Ameda Y, Gotoh H, Tsuzuki S, Uchimaru T, Seebach D. Chem. Eur. J. 2014; 20: 17077
  • 13 Umemiya S, Sakamoto D, Kawauchi G, Hayashi Y. Org. Lett. 2017; 19: 1112
  • 14 Xu F, Zacuto M, Yoshikawa N, Desmond R, Hoermer S, Itoh T, Journet M, Humphrey GR, Cowden C, Strotman N, Devine P. J. Org. Chem. 2010; 75: 7829
  • 15 Zu L, Xie H, Li H, Wang J, Wang W. Adv. Synth. Catal. 2007; 349: 2660
  • 16 In the reactions of entries 2–8 in Table 1, nitroalkane 2 was recovered in good yield (>90%).
  • 17 The diastereoselectivity and enantioselectivity of 3 (Table 1, entry 9) were not determined. The dr after denitration is 2.2:1, see Scheme 4.
    • 18a Ono N, Miyake H, Tamura R, Kaji A. Tetrahedron Lett. 1981; 22: 1705
    • 18b Tanner DD, Blackburn EV, Diaz GE. J. Am. Chem. Soc. 1981; 103: 1557
  • 19 The enantioselectivity of compound 5 is determined according to the scheme below.
    • 20a Adam W, Makosza M, Saha-Moller CR, Zhao C.-G. Synlett 1998; 1335

    • Review see:
    • 20b Ballini R, Petrini M. Tetrahedron 2004; 60: 1017
    • 20c Ballini R, Petrini M. Adv. Synth. Catal. 2015; 357: 2371
    • 21a Schwartz RE, Sesin DF, Joshua H, Wilson KE, Kempf AJ, Goklen KA, Kuehner D, Gaillot P, Gleason C, White R, Inamine E, Bills G, Salmon P, Zitano L. J. Antibiot. 1992; 455: 1853
    • 21b Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmats D, Schwartz R, Hammond M, Balkovec J, Vanmiddlesworth F. Antimicrob. Agents Chemother. 1992; 36: 1648
    • 21c Sundelof JG, Hajdu R, Cleare WJ, Onishi J, Kropp H. Antimicrob. Agents Chemother. 1992; 36: 607
    • 21d Leonard WR. Jr, Belyk KM, Bender DR, Conlon DA, Hughes DL, Reider PJ. Org. Lett. 2002; 4: 4201
    • 21e Mulder MP. C, Fodran P, Kemmink J, Breukink J, Kruijtser JA. W, Minnaard AJ, Liskamp RM. J. Org. Biomol. Chem. 2012; 10: 7491
    • 22a Wattanasin S, Kathawasla FG, Boeckman RK. Jr. J. Org. Chem. 1985; 50: 3810
    • 22b Corsello MA, Kim J, Garg NK. Nat. Chem. 2017; 9: 944
  • 23 Hayashi Y. Chem. Sci. 2016; 7: 866
    • 24a Blakemore PR, Cole WJ, Kocienski PJ, Morley A. Synlett 1998; 26
    • 24b Hosokawa S, Yokota K, Imamura K, Suzuki Y, Kawarasaki M, Tatsuta K. Chem. Asian J. 2008; 3: 1415