Synlett 2019; 30(08): 928-931
DOI: 10.1055/s-0037-1611766
letter
© Georg Thieme Verlag Stuttgart · New York

Kinetic Studies on Guanidine-Superbase-Promoted Ring-Opening Polymerization of ε-Caprolactone

Ruiting Yuan ◊
a   School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. of China
,
Qinghui Shou ◊
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, P. R. of China   Email: wangqg@qibebt.ac.cn
,
Qaiser Mahmood
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, P. R. of China   Email: wangqg@qibebt.ac.cn
,
Guangqiang Xu
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, P. R. of China   Email: wangqg@qibebt.ac.cn
,
Xitong Sun
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, P. R. of China   Email: wangqg@qibebt.ac.cn
,
Jiaqi Wan*
a   School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. of China
,
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, P. R. of China   Email: wangqg@qibebt.ac.cn
› Author Affiliations
This work was financially supported by the National Key R&D Plan (2017YFC1104800), the CAS Hundred Talents Program (Y5100719AL), the Young Taishan Scholars Program of Shandong Province, the ‘135’ Projects Fund of CAS-QIBEBT Director Innovation Foundation, the DICP & QIBEBT United Foundation (UN201701), the Natural Science Foundation of Shandong Province of China (ZR2018BB067), the Applied Basic Research Project of Qingdao (16-5-1-31-jch), and the China Scholarship Council (201607890002).
Further Information

Publication History

Received: 26 October 2018

Accepted after revision: 04 March 2019

Publication Date:
25 March 2019 (online)


◊These authors contributes equally to this work.

Abstract

The kinetics of the ring-opening polymerization of ε-caprolactone with butane-1,4-diol as the initiator and 1,5,7-triazabicyclo[4.4.0]dec-5-ene as catalyst were examined. A highly efficient and controllable polymerization of ε-caprolactone occurred with an activation energy of 22.5 kJ·mol–1, which is much lower than that observed with butan-1-ol as the initiator (39.5 kJ·mol–1). An intramolecular hydrogen-bonding-assisted mechanism is proposed to explain this lowering of the activation energy.

Supporting Information

 
  • References

    • 1a Woodruff MA, Hutmacher DW. Prog. Polym. Sci. 2010; 35: 1217
    • 1b Pitt GG, Gratzl MM, Kimmel GL, Surles J, Sohindler A. Biomater. 1981; 2: 215
    • 1c Kosuru SR, Sun T.-H, Wang L.-F, Vandavasi JK, Lu W.-Y, Lai Y.-C, Hsu SC. N, Chiang MY, Chen H.-S. Inorg. Chem. 2017; 56: 7998
    • 1d Kowalski A, Libiszowski J, Biela T, Cypryk M, Duda A, Penczek S. Macromolecules (Washington, DC U. S.) 2005; 38: 8170
    • 1e Liu Z.-T, Li C.-Y, Chen J.-D, Liu W.-L, Tsai C.-Y, Ko B.-T. J. Mol. Struct. 2017; 1134: 395
    • 1f Zhu N, Ling J, Zhu Y, Sun W, Shen Z. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 4366
    • 1g Wang X, Brosmer JL, Thevenon A, Diaconescu PL. Organometallics 2015; 34: 4700
    • 1h Ree M, Yoon J, Heo K. J. Mater. Chem. 2006; 16: 685
  • 2 Fastnacht KV, Spink SS, Dharmaratne NU, Pothupitiya JU, Datta PP, Kiesewetter ET, Kiesewetter MK. ACS Macro Lett. 2016; 5: 982
  • 3 Kaljurand I, Kütt A, Sooväli L, Rodima T, Mäemets V, Leito I, Koppel IA. J. Org. Chem. 2005; 70: 1019
    • 4a Pratt RC, Lohmeijer BG, Long DA, Lundberg PP. N, Dove AP, Li H, Wade CG, Waymouth RM, Hedrick JL. Macromolecules 2006; 39: 7863
    • 4b Lohmeijer BG, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP, Choi J, Wade C, Waymouth RM, Hedrick JL. Macromolecules 2006; 39: 8574
  • 5 Corey EJ, Grogan MJ. Org. Lett. 1999; 1: 157
    • 6a Ye W, Xu J, Tan CT, Tan CH. Tetrahedron Lett. 2005; 46: 6875
    • 6b Simoni D, Rondanin R, Morini M, Baruchello R, Invidiata FP. Tetrahedron Lett. 2000; 41: 1607
    • 6c Edwards MG, Williams JM. J. Angew. Chem. 2002; 114: 4934
  • 7 Pratt RC, Lohmeijer BG, Long DA, Waymouth RM, Hedrick JL. J. Am. Chem. Soc. 2006; 128: 4556
    • 8a Tang D, Noordover BA. J, Sablong RJ, Koning CE. J. Polym. Sci., Part A: Polym. Chem. 2011; 49: 2959
    • 8b Pascual A, Sardón H, Ruipérez F, Gracia R, Sudam P, Veloso A, Mecerreyes D. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 552
    • 8c Appel EA, Lee VY, Nguyen TT, McNeil M, Nederberg F, Hedrick JL, Swope WC, Rice JE, Miller RD, Sly J. Chem. Commun. 2012; 48: 6163
    • 9a Bourissou D, Moebs-Sanchez S, Martín-Vaca B. C. R. Chimie. 2007; 10: 775
    • 9b N’Guyen DA, Montembault V, Piogé S, Pascual S, Fontaine L. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 4051
    • 10a Hiki S, Miyamoto M, Kimura Y. Polymer 2000; 41: 7369
    • 10b Kricheldorf HR, Hachmann-Thießen H. Macromol. Chem. Phys. 2005; 206: 758
    • 10c Sobczak M. J. Macromol. Sci., Part A: Pure Appl. Chem. 2011; 48: 373
    • 10d Brannigan RP, Walder A, Dove AP. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 2279
    • 11a Ikpo N, Hoffmann C, Dawe LN, Kerton FM. J. Chem. Soc., Dalton Trans. 2012; 6651
    • 11b Lin B, Waymouth RM. J. Am. Chem. Soc. 2017; 139: 1645
    • 11c Nederberg F, Lohmeijer BG, Leibfarth F, Pratt RC, Choi J, Dove AP, Waymouth RM, Hedrick JL. Biomacromolecules 2007; 8: 153